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ABSTRACT. The aim of this paper is to present a quantitative version of the
Radon-Nikodým Property and some of the main results related to it. This ap-
proach gives an extra insight to the classical results. We introduce two indexes:
an index of representability of measures and an index of dentability. We review
classic results in order to obtain relationships between these and other indexes.

1. INTRODUCTION

From its very beginning, Banach space theory has combined measure theory
and point-set topological ideas with linear theory techniques to obtain powerful
results and applications. In recent years a new trend in Banach spaces has started:
the proposal is to deal with indexes related to topological or analytical proper-
ties (compactness, measurability, integrability, Dunford-Pettis property, etc.) and
via inequalities between the indexes then offer a new and deeper look at the con-
cepts under study. The advantages of this approach are that classical results can be
sharpened, better understood and new results and applications can be found. Some
recent publications along this line are [1, 2, 7, 11, 15, 16]

Throughout this paper (E, ‖·‖) is a Banach space and (Ω,Σ, µ) is a complete
probability space. By L1(µ,E) we denote the subspace of EΩ which consists
of Bochner integrable functions, and by L1(µ,E) the Banach space of equivalence
classes of Bochner integrable functions endowed with its usual norm. IfE = R we
simply write L1(µ) and L1(µ) respectively. All our vector measures m : Σ → E
are assumed to be countably additive, µ-continuous (i.e. m(A) = 0 whenever
A ∈ Σ and µ(A) = 0) and of bounded variation.

The aim of this paper is to introduce and study indexes related to the so-called
Radon-Nikodým property in Banach spaces in order to establish inequalities be-
tween them. In this way, we assign to a given m : Σ → E an “index of repre-
sentability” R(m), see Definition 2.2, that can be characterized as the infimum of
the constants δ for which there exists g ∈ L1(µ,E) satisfying∥∥∥∥m(A)−

∫
A
g dµ

∥∥∥∥ ≤ δ µ(A), for every A ∈ Σ,

In proposition 3.3 we strengthen a result by Musial [17, theorem 11.1, p. 236] in
order to prove that for every vector measure m : Σ → E∗ there exists a "weak"
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Radon-Nikodým derivative ψ : Ω→ E∗ in the sense that

〈x,m(A)〉 =

∫
A
〈x, g(t)〉 dµ, for every A ∈ Σ and every x ∈ E,

whose (strong) measurability is equivalent to the representability of m. The quan-
titative version of this last claim is established in proposition 3.5 as

(♦) R(m) = d(ψ,M(µ,E∗))

whereM(µ,E∗) is the subset of (E∗)Ω made up of all strongly (µ-) measurable
functions. The distances considered here are the usual inf distances for sets in the
subjacent space: in EΩ we consider the sup distance, see section 3 for details. Our
study for vector measures is completed with the corresponding study for “repre-
sentability of operators”. We also give several examples.

In section 4 we introduce the index of dentability Dent(C) of a set C ⊆ E as
the infimum of those ε for which C has nonempty slices of radius small than ε. We
study equivalent formulations of this index and its relationship with the index of
representability of vector measures (see theorem 4.8).

Two noticeable properties for Dent are established. First we prove (see theo-
rem 4.18) that every ω∗-compact convex set C ⊆ E∗ satisfies that

sup {Dent(D) : D ⊆ C} ≤ sup {Frag(D) : D ⊆ C} ≤
≤ 2 sup {Dent(D) : D ⊆ C, D countable},

(♠)

where Frag(D) is defined as the infimum of those ε for which D has nonempty
ω∗-relatively open sets of radius small than ε.

Second, we show that

(♣) Dent(C) ≤ γ(C),

for any convex bounded subset C ⊆ E, see proposition 4.20: here γ is the measure
of weak noncompactness defined by double limits

γ(H) := sup
{∣∣∣lim

n
lim
m
x∗m(xn)− lim

m
lim
n
x∗m(xn)

∣∣∣ : (x∗m)m ⊆ BE∗ , (xn)n ⊆ H
}

where the supremum is taken over those sequences for which the previous limits
exist (we refer to [16] for more information about γ).

We stress that inequalites (♦), (♠) and (♣) and their proofs summarize, sharpen
and offer new ways to the theory of Radon-Nikodým property as studied by many
authors in our references. We believe that beyond the applications that we offer in
this paper, the techniques developed here can be useful for other purposes in the
theory of Banach spaces.

1.1. Notation and terminology. Our notation and terminology is standard and it
is either explained when needed or can be found in our standard references for
Banach spaces [8] and vector measures and integration [5].

The letters E and F are reserved to denote real Banach spaces with their norms
‖·‖. If x ∈ E and r > 0 then B[x, r] (resp. B(x, r)) is the closed (resp. open) ball
of radius r centered at x; BE and SE are, respectively, the closed unit ball and the
unit sphere of E. L(E,F ) is the space of bounded linear operators from E into F
endowed with its norm

‖T‖ := sup{‖T (x)‖ : x ∈ BE}.
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By E∗ := L(E,R) –respectively, E∗∗ := L(E∗,R)– we denote the topological
dual –respectively, bidual– of E. The weak topology in E is denoted by ω, and
ω∗ is the weak∗ topology in E∗. For x ∈ E and x∗ ∈ E∗ we write 〈x, x∗〉 =
〈x∗, x〉 := x∗(x).

Given a set D ⊆ E we denote by Ext(D) the set of extremal points of D and
by co (D) its convex hull. Recall that the diameter of D is defined as

diam(D) = sup{‖x− y‖ : x, y ∈ D}.
and its radius is given by

rad(D) = inf{δ > 0 : there exists x ∈ E such that D ⊆ B(x, δ) }.
Our agreement for the paper is that inf ∅ = +∞. We will use +∞ assuming, as

usual, that λ · (+∞) = +∞ for λ > 0 and that δ < +∞ for every δ ∈ R.
For the probability space (Ω,Σ, µ) and B ∈ Σ, we write Σ+

B := {B′ ∈ Σ :

B′ ⊆ B,µ(B′) > 0} and Σ+ := Σ+
Ω . Given B ∈ Σ+, the average range of m|B is

denoted by

(1) ΓB :=

{
m(C)

µ(C)
: C ∈ Σ+

B

}
.

Technically speaking ΓB depends on m and µ but since most of the time we will
only work with these two measures m and µ we avoid the tedious and selfexplana-
tory terminology Γµ,mB unless it is strictly needed. ΓΩ, the average range of m, is
usually denoted by AR(m).

As previously said, throughout this paper m is assumed to be µ-continuous and
of bounded variation. The variation of m is denoted by |m|.

ByL∞(µ,E) we denote the space of equivalence classes of µ-essentially bounded
strongly measurable functions f : Ω→ E endowed with its natural “ess sup”norm
‖·‖∞. L∞(µ,E) stands for the subset of EΩ of all functions belonging to some
equivalence class of L∞(µ,E). If E = R we simply write L∞(µ) and L∞(µ)
respectively.

2. REPRESENTABILITY OF MEASURES

The reader should not have any difficulty when proving the next well-known fact
that follows. In case a reference is needed the following ones might well serve: [5,
Corollary II.1.3], [4, Proposition 2.2] and [2].

Proposition 2.1. Let f : Ω → E be a function. The following conditions are
equivalent:

(i) for every ε > 0 there is a countable partition {A0, A1, . . . } of Ω in Σ such
that µ(A0) = 0 and diam(f(An)) < ε for every n ∈ N;

(ii) for every ε > 0 and every A ∈ Σ+ there exists B ∈ Σ+
A such that

diam
(
f(B)

)
≤ ε;

(iii) f is strongly measurable.

Next we define the index of representability of a vector measure.

Definition 2.2. If m : Σ → E is a µ-continuous vector measure of bounded
variation, its index of representabilityR(m) is defined as

R(m) := inf{ε > 0 : for every A ∈ Σ+ there exists

B ∈ Σ+
A such that rad(ΓB) < ε}
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Recall that m as above is said to be representable if there exists f ∈ L1(µ,E)
such that m(A) =

∫
A fdµ for every A ∈ Σ. The following proposition that offers

a quantitative version of [5, Lemma 6, p. 135] states that the previous index gives
us an estimate of how far is m from being representable.

Proposition 2.3. Let m : Σ → E be a vector measure as in definition 2.2. If
R(m) < δ then there exists g ∈ L1(µ,E) satisfying

(2)
∥∥∥∥m(A)−

∫
A
g dµ

∥∥∥∥ ≤ δ µ(A), for every A ∈ Σ+.

Conversely, if δ ≥ 0 satisfies (2) for some Bochner integrable function f then
R(m) ≤ δ.

Proof. If R(m) = +∞ we can take g = 0 and (2) is obviously true. If R(m) <
δ < +∞, by an exhaustion argument we can find a partition {Bn : n = 0, 1, 2, ...}
in Σ of Ω such that

µ(B0) = 0 and for every n ∈ N, µ(Bn) > 0 and rad(ΓBn) < δ.

Given n ∈ N take xn ∈ E verifying ΓBn ⊆ B(xn, δ). For every A ∈ Σ and n ∈ N
we have that

(3) ‖m(A ∩Bn)− xnµ(A ∩Bn)‖ ≤ δµ(A ∩Bn).

Indeed, if µ(A ∩ Bn) = 0 then m(A ∩ Bn) = 0 and the inequality is clear.
Otherwise µ(A∩Bn) > 0 and (3) follows from ΓBn ⊆ B(xn, δ). On the one hand,
taking A = Ω in the above inequality and with the help of the triangle inequality
we have that

∞∑
n=1

‖xn‖µ(Bn) ≤ |m|(Ω) + δ < +∞,

and consequently g :=
∑∞

n=1 xnχBn is Bochner integrable. On the other hand,
inequality (3) implies that∥∥∥∥m(A)−

∫
A
g dµ

∥∥∥∥ ≤ ∞∑
n=1

‖m(A ∩Bn)− xnµ(A ∩Bn)‖ ≤ δµ(A).

Conversely, suppose that δ ≥ 0 verifies (2) for some g ∈ L1(µ,E) and every
A ∈ Σ+. Since g is strongly measurable, for every ε > 0 there exists B ∈ Σ+

A

such that diam(g(B)) < ε. Fix C ∈ Σ+
B . It follows from inequality (2) that∥∥∥∥m(C)

µ(C)
−
∫
C g dµ

µ(C)

∥∥∥∥ ≤ δ.
On the other hand, [5, Corollary II.2.8] implies that∫

C g dµ

µ(C)
∈ co(g(C)) ⊆ co(g(B)).

Since diam(g(B)) = diam(co(g(B))) < ε, we deduce that∥∥∥∥m(C)

µ(C)
−
∫
B g dµ

µ(B)

∥∥∥∥ ≤ ∥∥∥∥m(C)

µ(C)
−
∫
C g dµ

µ(C)

∥∥∥∥+

∥∥∥∥
∫
C g dµ

µ(C)
−
∫
B g dµ

µ(B)

∥∥∥∥ < δ + ε.

Thus rad(ΓB) < δ + ε for every ε > 0 and the proof is over. �
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It follows from the above proposition that R(m) is the infimum of those δ > 0
satisfying (2), so R(m) = 0 if m is representable. The converse is also true:
suppose that R(m) = 0 and use repeatedly inequality (2) for δ = 1/n to find a
sequence of functions (fn)n ⊆ L1(µ,E) such that∥∥∥∥m(A)−

∫
A
fn dµ

∥∥∥∥ ≤ 1

n
µ(A), for every A ∈ Σ.

Consequently∥∥∥∥∫
A
fp dµ−

∫
A
fq dµ

∥∥∥∥ ≤ (1

p
+

1

q

)
µ(A), for every A ∈ Σ.

Using [5, p. 46, theorem 4 (iv)] the above inequality leads to

‖fp − fq‖1 =

∫
Ω
‖fp − fq‖dµ ≤

(
1

p
+

1

q

)
µ(Ω) =

1

p
+

1

q
,

which implies that (fn)n is a Cauchy sequence in L1(µ,E), so it converges to a
function f ∈ L1(µ,E). If A ∈ Σ we can use the triangular inequality to deduce
that ∥∥∥∥m(A)−

∫
A
f dµ

∥∥∥∥ ≤ 1

n
µ(A) + ‖f − fn‖1 for every n ∈ N

and therefore m(A) =
∫
A f dµ for each A ∈ Σ.

Next proposition gathers the first properties ofR(·).

Proposition 2.4. Letm,m′ : Σ→ E be µ-continuous vector measures of bounded
variation and α ∈ R. The index of representability satisfies the following proper-
ties:

(i) R(m+m′) ≤ R(m) +R(m′).
(ii) If T : E → F is a bounded linear operator thenR(T ◦m) ≤ ‖T‖R(m).

(iii) R(αm) = |α|R(m).

Proof. If R(m) or R(m′) are infinite then property (i) is clear. Note that if we
agree that 0 · (+∞) = 0 and R(m) = +∞ then (ii) is also satisfied, so we will
assume in both cases that the indexes are finite.

(i) Suppose that δ > R(m), δ′ > R(m′). GivenA ∈ Σ+ there existsC ∈ Σ+
A

such that rad(ΓmC ) < δ. But we can also findD ∈ Σ+
C with rad(Γm

′
D ) < δ′,

so there exist x, x′ ∈ E with ΓmD ⊆ B(x, δ) and Γm
′

D ⊆ B(x′, δ′). Using
triangular inequality one deduces that Γm+m′

D ⊆ B(x+ x′, δ + δ′), which
leads to the result.

(ii) Let T : E → F be a bounded linear operator, then T ◦ m is an F -
valued vector measure. Now observe that if ΓmC ⊆ B(x, δ) then ΓT◦mC ⊆
B(T (x), ‖T‖δ), soR(T ◦m) ≤ ‖T‖R(m).

(iii) This is a consequence of (ii). If α = 0 then the relation is clear, while
α 6= 0 implies that T : E → E given by T (x) = αx verifies ‖T‖ =
1/‖T−1‖ = α, soR(m) ≤ 1

|α|R(T ◦m) ≤ R(m).

�

In the examples that follow we compute the index of representability of some
well-known examples of vector measures which are not representable.
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Example 2.5. [3, Example 2.1.2],[5, Example III.1.2] Consider a probability space
(Ω,Σ, µ) where µ is non-atomic and let m : Σ → L1(µ) be the vector measure
defined for each A ∈ Σ by

m(A) := χA.

ThenR(m) = 1.

Proof. It is clear that m is a µ-continuous vector measure whose average range
AR(m) is contained in BE , so R(m) ≤ 1. Since µ is non-atomic, for every
A ∈ Σ+ we can find disjoint sets B,B′ ∈ Σ+

A. Hence∥∥∥∥ χB
µ(B)

− χB′

µ(B′)

∥∥∥∥
1

=

∫
B

1

µ(B)
dµ+

∫
B′

1

µ(B′)
dµ = 2

which implies that rad(ΓA) ≥ 1 and consequentlyR(m) ≥ 1. �

Example 2.6. Let λ be the Lebesgue measure on [0, 1] andM the Lebesgue mea-
surable sets. For E = c0 the Banach space with the supremum norm ‖ · ‖∞,
consider the vector measure m :M→ c0 given by

m(A) =

(∫
A
rn(t) dλ

)
n

where (rn)n are the Rademacher functions. ThenR(m) = 1.

Proof. Since (rn)n is an orthonormal sequence in L2(λ) we conclude thatm(A) ∈
c0. On the other hand, m is clearly a finitely additive measure that satisfies

‖m(A)‖∞ ≤ λ(A) for every A ∈M

From the above inequality it follows that m is countably additive, λ-continuous
and of bounded variation. It also follows thatR(m) ≤ 1. Let us suppose that there
exists a function f ∈ L1(λ,E), f = (f1, f2, ...) and a constant 0 ≤ c < 1 such
that ∥∥∥∥m(A)−

∫
A
f dλ

∥∥∥∥
∞
≤ c λ(A), for every A ∈M.

In particular, each component verifies

(4)
∣∣∣∣∫
A
rn(t) dλ−

∫
A
fn dλ

∣∣∣∣ ≤ c λ(A), for every A ∈M.

Thus

(5)
∫
A
|rn(t)− fn(t)| dλ ≤ c λ(A), for every A ∈M.

We deduce from (5) that for every n there exists a λ-null set An ∈ M such that
t ∈ [0, 1] \ An implies |rn(t) − fn(t)| ≤ c, so |fn(t)| ≥ 1 − c. Hence, for each
t ∈ [0, 1] \

⋃
nAn we have that

|fn(t)| > 1− c, for every n ∈ N,

which contradicts the fact that f takes its values in c0 almost surely and allows us
to conclude thatR(m) ≥ 1. �
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2.1. Representability of operators. Let us recall that a bounded linear operator
T : L1(µ) → E is said to be (Riesz) representable if there exists g ∈ L∞(µ,E)
such that

T (f) =

∫
Ω
fg dµ,

see [5, Section 1. Chapter III]. In this case we have that ‖T‖ = ‖g‖∞. The set of
all representable operators is a closed subspace of L(L1(µ), E) that we will denote
by Lrep(L1(µ), E).

If T is an operator as above, then m : Σ→ E defined as m(A) = T (χA) is a µ-
continuous vector measure whose average range is contained in T (BL1(µ)). On the
other hand, each µ-continuous vector measure with bounded average range extends
to an operator T ∈ L(L1(µ), E) verifying m(A) = T (χA) for every A ∈ Σ. The
following proposition is a quantitative version of [5, lemma III.1.4].

Proposition 2.7. Let T : L1(µ) → E be a bounded linear operator and let
m : Σ→ E be the vector measure defined by m(A) = T (χA) for every A ∈ Σ.
Then

R(m) = d(T, Lrep(L
1(µ), E))

where the distance is in the norm-operator.

Proof. Since AR(m) is bounded we have that R(m) is finite. Given δ > R(m)
and according to Proposition 2.3 there exists g ∈ L1(µ,E) such that

(6)
∥∥∥∥m(A)−

∫
A
g dµ

∥∥∥∥ ≤ δµ(A), for every A ∈ Σ.

Using ‖m(A)‖ ≤ ‖T‖µ(A), inequality (6) tells us that∥∥∥∥∫
A
g dµ

∥∥∥∥ ≤ (δ + ‖T‖
)
µ(A), for every A ∈ Σ

By [5, p. 46, theorem 4 (iv)] this last inequality leads to∫
A
‖g‖ dµ ≤

(
δ + ‖T‖

)
µ(A), for every A ∈ Σ,

from where it follows that ‖g‖ ≤ δ + ‖T‖ almost everywhere, and therefore g
belongs to L∞(µ,E).

If S : L1(µ) → E is the representable operator given by S(f) =
∫
A fg dµ,

f ∈ L1(µ), then inequality (6) can be read as

‖T (χA)− S(χA)‖ ≤ δ µ(A), for every A ∈ Σ.

From here we obtain that

‖T (f)− S(f)‖ ≤ δ‖f‖1, for every f ∈ L1(µ),

which says that d(T, Lrep(L
1(µ), E)) ≤ δ; since δ > R(m) is arbitrary we con-

clude that d(T, Lrep(L
1(µ), E)) ≤ R(m).

The converse inequality d(T, Lrep(L
1(µ), E)) ≥ R(m) straightforwardly fol-

lows from Proposition 2.3 and is left to the reader. �
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3. GELFAND DERIVATIVE

In this section we will use the tools introduced in the previous one to study prop-
erties of strong measurability of ω∗-densities of vector measures and operators.

The following concepts are needed here: a functionψ : Ω→ E∗ is said to be ω∗-
scalarly measurable (resp. µ-Gelfand integrable) if for every x ∈ E the function
〈x, ψ〉 : Ω→ R given by t 7→ 〈x, ψ(t)〉 is measurable (resp. µ-integrable). If ψ is
Gelfand integrable, then for eachA ∈ Σ there exists a vector

∫
A ψ dµ ∈ E

∗ (called
the Gelfand integral of ψ over A) satisfying

〈x,
∫
A
ψ dµ〉 =

∫
A
〈x, ψ〉 dµ for every x ∈ E.

For basic information about the Gelfand integral see [5, p. 53-54].
With the help of the lifting theorem (see below) it can be proved that given a µ-

continuous (norm) vector measure of bounded variation m : Σ → E∗ there exists
a Gelfand integrable function ψ : Ω→ E∗ satisfying

(I) 〈x,m(A)〉 =

∫
A
〈x, ψ(t)〉dµ,

for every x ∈ E and A ∈ Σ, see [17, theorem 11.1, p. 236]. If we think in terms
of continuous linear operators T : L1(µ) → E∗, the application of the previous
result to the vector measure m(A) = T (χA) provides a ω∗-measurable function
ψ : Ω→ E∗ with the property

(I’) 〈x, T (f)〉 =

∫
Ω
〈x, ψ(t)〉f(t)dµ

for every x ∈ E and for every f ∈ L1(µ). It is pointed out in [5, p. 84], that the
existence of such a ω∗-measurable function ψ : Ω→ E∗ satisfying (I’) is “mostly
an esthetic generalization of the representation results that deal with Bochner inte-
grabiliy, because the measurability properties of the kernel ψ are not, in general,
strong enough to exhibit structural properties of the operator under representa-
tion”. In terms of vector measures the following example, [17, example 3.1, p.
186], illustrate the comment above.

Example 3.1. Let µ be the Lebesgue measure on [0, 1], Σ the Lebesgue measurable
sets and m : Σ → `2([0, 1]) the null vector measure i.e. m(A) = 0 for every A ∈
Σ. Clearly the null function is a (strongly measurable) Gelfand derivative (in fact
the Radon-Nikodým derivative ofm). On the other hand, let {et : t ∈ [0, 1]} be the
canonical base of the Hilbert space `2([0, 1]). The function f : [0, 1] → `2([0, 1])
defined by f(t) = et, t ∈ [0, 1] satisfies that 〈x, f(t)〉 = 0, µ-almost everywhere,
for every x ∈ `2([0, 1]). So f is ω∗-meaurable and satisfies (I) but it is not strongly
measurable.

Our aim now is to prove that for vector measures m as those considered here a
ω∗-measurable function ψ verifying (I) can be obtained with an additional property
that avoids the commented pathologies.

In what follows we fix a lifting ρ : Σ → Σ on (Ω,Σ, µ), see [13, p. 46, The-
orem 3], [9, 341K] and [21, Appendix G]. Recall that ρ satisfies the following
properties:

(1) If A,B ∈ Σ and µ(A∆B) = 0 then ρ(A) = ρ(B);
(2) µ(ρ(A)∆A) = 0 for every A ∈ Σ;
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(3) ρ(A ∩B) = ρ(A) ∩ ρ(B) for every A,B ∈ Σ;
(4) ρ(∅) = ∅, ρ(Ω) = Ω;
(5) ρ(Ω\A) = Ω\ρ(A) for every A ∈ Σ;
(6) ρ(A ∪B) = ρ(A) ∪ ρ(B) for every A,B ∈ Σ.

We note that the lifting ρ can be extended to a map ρ : L∞(µ) → L∞(µ) that
assigns to each equivalence class f ∈ L∞(µ) a function ρ(f) ∈ f .

The following lemma is needed later. The definition of ΓB below is given in
equation (1).

Lemma 3.2. If B ∈ Σ+, then ΓB = Γρ(B).

Proof. Observe that for any B′ ∈ Σ+
B we have that ρ(B′) ⊆ ρ(B), µ(ρ(B′)) =

µ(B′) and m(ρ(B′)) = m(B′) by µ-continuity. Therefore

m(B′)

µ(B′)
=
m(ρ(B′))

µ(ρ(B′))
∈ Γρ(B),

which means that ΓB ⊆ Γρ(B).
Conversely, ifB′ ⊆ ρ(B) thenB′ = B′∩

(
B∪(ρ(B)\B)

)
and µ(ρ(B)\B) = 0

implies that µ(B′ ∩B) = µ(B′) and m(B′ ∩B) = m(B′). Consequently

m(B′)

µ(B′)
=
m(B′ ∩B)

µ(B′ ∩B)
∈ ΓB,

and the proof is over. �

Proposition 3.3. If m : Σ → E∗ is a µ-continuous (norm) vector measure of
bounded variation, then there is a ω∗-measurable function ψ : Ω → E∗ with the
following properties:

(I) 〈x,m(A)〉 =
∫
A 〈x, ψ(t)〉dµ for every x ∈ E and A ∈ Σ;

(II) if A ∈ Σ, then ψ(t) ∈ ΓA
ω∗ for µ-almost every t ∈ A.

Proof. The existence of a ω∗-measurable function ψ : Ω → E∗ verifying con-
dition (I) is proved by Musial in [17, theorem 11.1, p. 236]. Here we refine his
construction to obtain a function that also satisfies the second condition.

We assume first that there exists M > 0 such that ‖m(A)‖ ≤ Mµ(A) for each
A ∈ Σ. Following Musial’s proof, for every x ∈ BE we consider a µ-Radon-
Nikodým derivative gx ∈ L∞(µ) of the scalar measure 〈x,m〉. The function
ψ : Ω→ E∗ given by ψ(t)(x) = ρ(gx)(t) is well-defined, ω∗-measurable and sat-
isfies (I).

We show now that ψ also verifies (II). For every finite partition π of Ω into
Σ-sets we write

sπ :=
∑
A∈π

m(A)

µ(A)
χA

Fix x ∈ BE . By [5, lemma 1, p. 67] the net

〈x, sπ〉 =
∑
A∈π

〈x,m〉(A)

µ(A)
χA

converges in L∞(µ) to gx when considering partitions ordered by refinement and
with the agreement that 0/0 = 0. Hence

ρ(〈x, sπ〉) =
∑
A∈π

〈x,m〉(A)

µ(A)
χρ(A)
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converges to ρ(gx) uniformly in Ω because of the continuity property of ρ, see [13,
p. 35].

With all the above, if we define

ρ(sπ) :=
∑
A∈π

m(A)

µ(A)
χρ(A),

then the net ρ(sπ)(t) ω∗-converges to ψ(t) for every t ∈ Ω. For the given A, if
t ∈ A∩ρ(A) then ψ(t) is also the ω∗-limit of ρ(sπ)(t) when taking only partitions
π finer than {ρ(A),Ω\ρ(A)}, so ψ(t) ∈ Γρ(A)

ω∗ . Bearing in mind now lemma 3.2

we conclude that ψ(t) ∈ ΓA
ω∗ for µ-almost every t ∈ A, and the validity of

condition (II) is stated.
Now we deal with the general case. Fix a partition {Ωn : n ∈ N} of Ω, such

that for every n ∈ N there exists Mn > 0 verifying

‖m(A ∩ Ωn)‖ ≤Mnµ(A ∩ Ωn),

for each A ∈ Σ, see [5, p. 63, theorem 5]. Defining An := ρ(Ωn), we obtain a
sequence (An)n∈N of pairwise disjoint sets with µ(Ω \

⋃
nAn) = 0 and satisfying

‖m(A ∩An)‖ ≤Mnµ(A ∩An),

for every A ∈ Σ. Note that the restriction of ρ to ΣAn is a lifting on (An,ΣAn , µ)
so we can apply the first part in order to deduce the existence of a ω∗-measurable
function ψn : An → E∗ satisfying the conditions (I) and (II). It is clear that
ψ : Ω→ E∗ defined as ψ =

∑∞
n=1 ψnχAn is ω∗-measurable. If x ∈ E then∫

∪ni=1An

|〈x, ψ〉| dµ =

n∑
i=1

∫
Ai

|〈x, ψ〉| dµ =

=

n∑
i=1

|〈x,m〉| (Ai) ≤ ‖x‖|m|(Ω) <∞.

so 〈x, ψ〉 ∈ L1(µ) by the monotone convergence theorem. Moreover, the domi-
nated convergence theorem implies that

〈x,m(A)〉 =

∞∑
n=1

〈x,m(A ∩An)〉 =

∞∑
n=1

∫
A∩An

〈x, ψn〉 dµ =

∫
A
〈x, ψ〉 dµ

for every A ∈ Σ.
Our function ψ also satisfies (II). Indeed, if A ∈ Σ then for µ-almost every

t ∈
⋃
n (A ∩An) the element ψ(t) ∈

⋃
n ΓA∩An

ω∗ ⊆ ΓA
ω∗ . �

Definition 3.4. If m : Σ → E∗ is a µ-continuous (norm) vector measure of
bounded variation, we say that a ω∗-measurable function ψ : Ω→ E∗ is a Gelfand
derivative of m if it satisfies (I) and (II) of proposition 3.3.

If f, g ∈ (E∗)Ω the distance between f and g is

d(f, g) := sup {‖f(t)− g(t)‖ : t ∈ Ω} ∈ [0,+∞]

For F ⊆ E∗ we writeM(µ, F,E∗) (resp. L1(µ, F,E∗)) to denote the subset of
all functions in (E∗)Ω which are strongly measurable (resp. Bochner integrable)
and µ-essentially F -valued.
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Proposition 3.5. Letm : Σ→ F be a µ-continuous measure of bounded variation
with values in a Banach space F . If E∗ is a dual Banach space which contains
isometrically F (i : F ↪→ E∗) then every Gelfand derivative ψ : Ω→ E∗ of i ◦m
verifies that

R(m) = d(ψ,M(µ, F,E∗)) = d(ψ,L1(µ, F,E∗))

In particular, ifR(m) = 0 then ψ is a Radon-Nikodým derivative of m.

Proof. The proof is similar to the one of [2, theorem 2.3]. We identify the elements
of F with their image in E∗ so that we can write ΓB = Γµ,mB = Γµ,i◦mB .

Suppose that d(ψ,M(µ, F,E∗)) < ε so we can find g ∈M(µ, F,E∗) satis-
fying ‖ψ(t)− g(t)‖ < ε for every t ∈ Ω. If (sn)n∈N is a sequence of simple
F -valued functions that converges µ-a.e. to g then, by Egorov’s theorem [6, p.
94, theorem 1], there exists a set D verifying µ(Ω \ D) < µ(A) and n ∈ N with
‖ψ(t) − sn(t)‖ < ε for every t ∈ D. Clearly A ∩ D ∈ Σ+, and using that sn is
simple there are y ∈ F and B ∈ Σ+

A∩D with ‖ψ(t)− y‖ < ε for all t ∈ B. Hence,
if B′ ∈ Σ+

B and x ∈ BE we have that∣∣〈x,m(B′)〉 − µ(B′)〈x, y〉
∣∣ =

∣∣∣∣∫
B′
〈x, ψ〉 dµ−

∫
B′
〈x, y〉 dµ

∣∣∣∣ ≤ ε µ(B′)

Taking the supremum on x ∈ BE we deduce ‖m(B′)−µ(B′)y‖ ≤ εµ(B′). There-
fore ΓB ⊆ B(y, ε) and rad(ΓB) < ε. This shows thatR(m) ≤ d(ψ,M(µ, F,E∗)).

Fix ε > R(m). Given A ∈ Σ+ there exists B̃ ∈ Σ+
A and y ∈ F such that Γ

B̃

ω∗

is contained in the ball BE∗(y, ε). If B is the set of all t ∈ B̃ verifying that ψ(t)
belongs to this ball, thenB ∈ Σ+

B̃
by property (II) and the fact that µ is complete. In

other words, for everyA ∈ Σ+ there existsB ∈ Σ+
A and y ∈ E∗ with ‖ψ(t)−y‖ <

ε for each t ∈ B. By an exhaustion argument we can construct a countable family
of disjoint sets {Bn : n ∈ N} with µ(Ω \ ∪nBn) = 0 and a sequence of elements
(yn)n∈N in F with the previous property so that g =

∑
n ynχBn + fχΩ\∪Bn

is an
integrable function satisfying ‖ψ(t) − g(t)‖ < ε for every t ∈ B. The fact that g
is integrable is consequence of the monotone convergence theorem since∫
∪mi=nBn

‖g‖ dµ =
m∑
n=1

‖yn‖µ(Bn) ≤
m∑
n=1

(
ε+
‖m(Bn)‖
µ(Bn)

)
µ(Bn) ≤ ε+ |m|(Ω)

for every m ∈ N. This shows that d(ψ,L1(µ, F,E∗)) ≤ R(m).
On the other hand, the inequality d(ψ,M(µ, F,E∗)) ≤ d(ψ,L1(µ, F,E∗)) is

obvious.
Observe that the proof shows that R(m) is finite if and only if any of the dis-

tances d(ψ,M(µ, F,E∗)) or d(ψ,L1(µ, F,E∗)) is finite, so the equality remains
true if one of these indexes is infinity.

Finally, ifR(m) = 0 then d(ψ,L1(µ, F,E∗)) = 0 so ψ is a Bochner integrable
function with values in F almost everywhere that satisfies

〈x,m(A)〉 =

∫
A
〈x, ψ(t)〉dµ = 〈x,

∫
A
ψ dµ〉 for every x ∈ E and A ∈ Σ,

Therefore

m(A) =

∫
A
ψ dµ for every A ∈ Σ.

�
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Remark 3.6.
(i) Notice that although a Gelfand derivative ψ : Ω → E∗ may take values

out of F we can control d(ψ(t), F ) ≤ R(m) for µ-almost every t ∈ Ω.
(ii) If we replace in (II) the condition

ψ(t) ∈ ΓA
ω∗

by the condition (II’)

ψ(t) ∈ coω
∗
ΓA,

then proposition 3.5 is also valid. As of now we do not know if this fact can
be useful to some further study.

Immediate consequences of the previous propositions are the following corol-
laries.

Corollary 3.7. Let m : Σ → F be a µ-continuous measure of bounded variation
with values in a Banach space F . If i : F ↪→ F ∗∗ is the canonical inclusion in the
bidual then every Gelfand derivative ψ : Ω→ F ∗∗ of i ◦m verifies that

R(m) = d(ψ,M(µ, F, F ∗∗)) = d(ψ,L1(µ, F, F ∗∗))

In particular, ifR(m) = 0 then ψ is a Radon-Nikodým derivative of m.

Corollary 3.8. Let T : L1(µ) → F be a continuous linear operator. For every
dual Banach space E∗ containing F isometrically (i : F ↪→ E∗) there is a ω∗-
measurable function ψ : Ω→ E∗ with the following properties:

(A) 〈x, i ◦ T (f)〉 =
∫

Ω 〈x, ψ(t)〉f(t)dµ for every x ∈ E and f ∈ L1(µ);

(B) if A ∈ Σ then ψ(t) ∈
{
i◦T (χB)
µ(B) : B ∈ Σ+

A

}ω∗
for µ-almost every t ∈ A.

For every function ψ : Ω→ E∗ satisfying (A) and (B) we have that

d(T, Lrep(L
1(µ), F )) = d(ψ,M(µ, F,E∗)) = d(ψ,L1(µ, F,E∗)) ∈ [0,∞]

In addition, if T is representable then ψ is a density of T .

Proof. Combine propositions 2.7 and 3.5. �

Example 3.9. Let ([0, 1],M, λ) be the Lebesgue measure and m : M → L1(λ)
the vector measure given by m(A) = χA. For every lifting ρ on the previous
probability space, the function ψ : [0, 1]→ L1(λ)∗∗ that associates to each t ∈ Ω
the finitely additive measure νt :M→ R defined as

νt(A) =

{
0 if t /∈ ρ(A)

1 if t ∈ ρ(A)

is a Gelfand derivative of m. Moreover R(m) = 1 and d(ψ(t), L1(λ)) = 1 for
λ-almost every t ∈ [0, 1].

Proof. We consider L1(λ) as a subspace of L1(λ)∗∗ which consists of all finitely
additive λ-continuous (scalar) measures onM endowed with the norm |ν|(Ω) (to-
tal variation). The space L1(λ) is identified with its countably additive elements
(see [23, theorem 2.3, p. 53]). The function ψ is well-defined and verifies for every
A,B ∈ Σ∫

A
〈χB, νt〉 dλ =

∫
A

∫
[0,1]

χB dνt dλ =

∫
A
χρ(B)(t) dλ = 〈χB,m(A)〉.
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Extending this expression by linearity for simple functions and by density to all the
elements of L∞(λ) we deduce that ψ verifies (I).

We have now to check (II). Given A ∈ M we will see that ψ(s) ∈ ΓA
ω∗ for

every s ∈ A ∩ ρ(A). Fix a ω∗-open neighbourhood of ψ(s) of the form

W =
{
y∗∗ ∈ L1(λ)∗∗ : |〈y∗∗ − ψ(s), hi〉| < ε for every i = 1, ...,m

}
where hi ∈ L∞(λ). We are going to show that it intersects ΓA. Since simple func-
tions are dense in L∞(λ), we can assume that each function hi can be written as
hi =

∑ki
j=1 a

i
jχρ(Ai

j) where the family {ρ(Aij) : j = 1, ..., ki} is a finite partition
of Ω for every i = 1, ...,m. Denoting by C the intersection of ρ(A) ∩ A with the
sets ρ(Aij) containing s among its elements, we deduce that C ∈ M+

A. Moreover
for every i we have that∣∣∣∣〈 χC
µ(C)

− ψ(s), hi

〉∣∣∣∣ =

∣∣∣∣∣∣
ki∑
j=1

aij

(
µ(C ∩ ρ(Aij))

µ(C)
− νs(ρ(Aij))

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
ki∑
j=1

aij0

∣∣∣∣∣∣ = 0.

Therefore ψ is a Gelfand derivative of m.
We know thatR(m) = 1 by example 2.5, but we also have that d(ψ(t), L1(µ)) =

1 for almost every t ∈ [0, 1]. To see this last assertion note that for almost every
t ∈ [0, 1] we can find a decreasing sequence of sets An = ρ(An) containing t and
with limn λ(An) = 0. Therefore, given a λ-continuous countably additive measure
η :M→ R we have that

‖νt − η‖ ≥ |1− η(An)| for every n ∈ N .

Using that limn η(An) = 0 we conclude the result. �

Example 3.10. Let ([0, 1],M, λ) be as above and consider the vector measure
m :M→ c0 from example 2.6 given by

m(A) =

(∫
A
rn(t) dλ

)
n

The function ψ : [0, 1] → `∞ defined as ψ(t) = (rn(t))n is a Gelfand derivative
of m. MoreoverR(m) = 1 and d(ψ(t), c0) = 1 for λ-almost every t ∈ [0, 1].

Proof. Fix an arbitrary A ∈ Σ+. For every (xn)n ∈ `1 = c∗0 we have that∫
A

∞∑
n=1

xnrn(t) dλ =

∞∑
n=1

∫
A
rn(t)xn dλ

by the dominated convergence theorem, which shows (I).
To see (II) take the subset A′ of A which consists of all elements of A that

remain when removing those t ∈ A which are dyadic numbers, (i.e. those of the
form t = k/2n for some k, n ∈ N) as well as those which belong to a µ-null set of
the form

{t ∈ A : (rn(t))mn=1 = (an)mn=1}
for some (an)mn=1 ∈ {−1, 1}m, m ∈ N. Note that we have removed a countable
number of µ-null sets, so A′ ⊆ A verifies µ(A) = µ(A′).

We are going to prove that (rn(s))n ∈ ΓA
ω∗ for each s ∈ A′, which will show

(II). In order to simplify the notation we will prove that a ω∗-open neighbourhood
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of (rn(s))n of the form

V =

{
(yn)n ∈ `∞ :

∣∣∣∣∣
∞∑
n=1

xn(yn − rn(s))

∣∣∣∣∣ < ε

}
( for some (xn)n ∈ `1 )

intersects ΓA. The general case of an arbitrary ω∗-neighbourhood is analogous.
We start by fixing m0 ∈ N such that

∑
n>m0

|xn| < ε/2. If s ∈ A′ then
B := {t ∈ A′ : (rn(t))m0

n=1 = (rn(s))m0
n=1} is an element of Σ with positive

measure (because of the construction of A′), so∫
B rn(t) dµ

µ(B)
=
rn(s)µ(B)

µ(B)
= rn(s) for n = 1, ...,m0.

Therefore m(B)/µ(B) ∈ V since∣∣∣∣∣
∞∑
n=1

xn

(∫
B rn(t) dµ

µ(B)
− rn(s)

)∣∣∣∣∣ ≤ 2
∑
n>m0

|xn| < ε.

We know thatR(m) = 1 by example 2.6. Finally, note that the sequence ψ(t) has
range in {−1, 1}N for every t which is not dyadic, so d(ψ(t), c0) = 1 for λ-almost
everywhere. �

4. INDEX OF DENTABILITY

The concept of dentability and its relationship with the Radon-Nikodým prop-
erty was originally studied by Rieffel [20], who showed that a Banach space has
the Radon-Nikodým Property whenever every bounded subset of it is dentable.
Aftwerwards, Huff [12] proved the converse.

If C ⊆ E, a slice of C is a nonempty set S of the form S = C ∩H where H is
a ω-open half-space, i.e.

H = {x ∈ E : 〈x, x∗〉 < α}, for some x∗ ∈ E, α ∈ R

Definition 4.1. For each subset C of E define:

Dent(C) = inf {ε > 0 : there is a slice S of C with rad(S) < ε}

Note that Dent(C) ≤ rad(C) for every C ⊆ E.
The following theorem is a version for radii of a celebrated result by Asplund,

Namioka and Bourgain [3, p. 51, theorem 3.4.1] for diameters. Since the proof is
totally analogue we omit it.

Theorem 4.2. Suppose that ε > 0. Let J , K0, K1 be closed bounded convex
subsets of E and z ∈ E such that

(i) J ⊆ co(K0 ∪K1)
(ii) K0 ⊂ J and K0 ⊂ B(z, ε)

(iii) J \K1 6= ∅
Then for every ε′ > ε there is a slice of J which contains a point of K0 and is
contained in B(z, ε′).

The following lemma is a version for radius of [10, p. 482, Proposition 2.3].

Lemma 4.3. Suppose that C is a bounded subset of E that admits a slice S =
C ∩H contained in

⋃n
i=1B(xi, ε). Then for every ε′ > ε there is a slice S′ of C

contained in B(xk, ε
′) for some k ∈ {1, ..., n}.



RADON-NIKODÝM INDEXES AND MEASURES OF WEAK NONCOMPACTNESS 15

Proof. For n = 1 it is clear. If n = 2 we can assume that C ⊆ co(C \B(x1, ε)),
since otherwise we can use the separation’s theorem to obtain a new slice S′ of
C contained in B(x1, ε). Fix ε′ > δ > ε and write K0 := co(C ∩B(x2, ε)),
K1 := co(C ∩Hc) and J := co(C). These are closed convex sets verifying the
following conditions: (i) J ⊆ co(C \B(x1, ε)) ⊆ co(K0 ∪K1), (ii) K0 ⊆ J and
K0 ⊆ B(x2, δ), (iii) J \ K1 6= ∅ since if J \ K1 = ∅ then J ⊆ K1 ⊆ Hc so
S = C ∩ H = ∅, which is absurd. By theorem 4.2 there exists a slice S′ of J
contained in B(x2, ε

′). Thus S′ ∩ C is a (nonempty) slice of C contained in the
same ball.

Suppose now that n > 1 and the result is valid for slices contained in less than
n balls of radius ε. Fix ε < δ < ε′. By the induction hypothesis C \B(xn, ε) has a
slice (C \B(xn, ε))∩H contained in some B(xk, δ) for some k ∈ {1, ..., n− 1}.
Then C ∩H is a slice of C contained in B(xk, δ) ∪ B(xn, δ). By the case n = 2
we conclude the result. �

In some references [3, 5] the dentability of C is defined as the infimum of all
ε > 0 such that there exists x0 ∈ C with C * co(C \B(x0, ε)). This motivates
another obvious definition of an index of dentability taking the infimum of all ε > 0
for which the previous assertion is true. It can be shown that this new index does not
coincide with the one we introduced, although it can be established an equivalence
between them in terms of an inequality. However, if we allow that the center x0

can be out of C then both formulations coincide, as the following lemma shows.
This lemma also includes a quantitative version of [10, p. 482-83, Corollary 2.4]

Lemma 4.4. Let C be a bounded subset of E. Then

Dent(C) = inf {ε > 0 : there is D ⊆ C with rad(D) < ε and C * co(C \D)}
= inf {ε > 0 : there is a slice S of C with α(S) < ε}.
= inf {ε > 0 : there is D ⊆ C with α(D) < ε and C * co(C \D)}

where α is the Kuratowski measure of noncompactness

α(D) = inf {ε > 0 : there exists (Di)
n
i=1 with D =

n⋃
i=1

Di and rad(Di) < ε}

Proof. Denote by L1, L2 and L3 the infimums from top to bottom, respectively.
The equality Dent(A) = L1 is easy: if D is a subset of C with rad(D) < ε
and C * co(C \D) then using separation’s theorem we can find a slice S of C
contained in C \ co(C \D) ⊆ D. Conversely, if S is a slice of C with rad(S) < ε
simply take D = S.

For the second equality note that L2 ≤ Dent(C) obviously. The converse in-
equality is a direct consequence of lemma 4.3.

Finally, L3 ≤ L1 = Dent(C) by definition. On the other hand, if L3 < δ and
D ⊆ C verifies α(D) < δ and C * co(C \D), then by separation’s theorem we
can find a slice S of C contained in D, so α(S) < δ. This shows that Dent(C) =
L2 ≤ L3. �

Proposition 4.5. If C is a bounded subset of E then

Dent(C) = Dent(co(C)) = Dent(co(C)).

Proof. It is clear that Dent(C) ≤ Dent(co(C)) ≤ Dent(co(C)) since every slice
of co(C) contains a nonempty slice of co(C) by density, and the last one contains
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a nonempty slice of C by convexity. We just have to show that Dent(co(C)) < ε
if Dent(C) < ε. Fix a slice S = H ∩ C of C with rad(H ∩ C) < ε. The closed
convex sets K0 := co(H ∩ C), K1 := co(Hc ∩ C) and J := co(C) verify: (i)
J ⊆ co(K0 ∪K1), (ii)K0 ⊆ J and rad(K0) < ε, (iii) J \K1 6= ∅, since otherwise
J = K1 ⊆ Hc implies C ∩H = ∅.

Hence we can apply theorem 4.2 and deduce that there exists a slice S of J
which contains a point ofK0 and with radius less than ε, so Dent(co(C)) < ε. �

Proposition 4.6. If C is a bounded subset of E then

(7) Dent(C) ≤ 2 sup {Dent(D) : D ⊆ C, D is countable}

Proof. Suppose that Dent(C) > δ. We are going to construct a sequence (Dn)n
of finite subsets of C satisfying for each n ∈ N

(a) Dn+1 ∩B(z, δ) = ∅ if z ∈
⋃n
i=1Di.

(b) co(Dn+1) ∩B(z, 1
n+1) 6= ∅ whenever z ∈

⋃n
i=1Di.

This will finish the proof since the countable setD =
⋃
nDn verifies Dent(D) ≥

δ/2. To see this, take any subset F of D with radius less than δ/2. If z ∈ F then
F is contained in B(z, δ). Suppose that z ∈ Dn, then

D ∩B(z, δ) ⊆
n⋃
i=1

Di ⊆ co(
∞⋃

i=n+1

Di) ⊆ co(D \B(z, δ)) ⊆ co(D \ F ).

by properties (a) and (b), and therefore D ⊆ co (D \ F ).
We will construct such family by induction. Fix an arbitrary point D1 = {x}

of C. Since x ∈ C ⊆ co(C \B(x, δ)) we can find a finite family of points in
C \ B(x, δ) whose convex hull intersects B(x, 1/2). Take D2 as the finite family
of points.

By induction, suppose that we have constructed (Di)
n
i=1 verifying conditions (a)

and (b) and call Fn =
⋃n
i=1Di. Since α

(⋃
z∈Fn

B(z, δ) ∩ C
)
< δ we have that

C ⊆ co

(
C \

⋃
z∈Fn

B(z, δ)

)
.

For every z0 ∈ Fn there exists a finite family of points in C \
⋃
z∈Fn

B(z, δ)
whose convex hull intersects B(z0, 1/(n + 1)). Consider Dn+1 the union of all
those finite families. This is a finite set that satisfies (a) and (b) by construction. �

The following example shows that constant 2 in (7) is sharp even if C is closed
and convex.

Example 4.7. Let `∞([0, 1]) be the family of all real-valued bounded functions
on [0, 1] endowed with the supremum norm. Consider the closed subspace E
of `∞([0, 1]) made up of all the functions with countable support. We note that
(E, ‖ · ‖∞) is a Banach space.

Take the convex and closed set C ⊆ E which consists of all functions f whose
range is contained in [0, 2].

Every countable subset D of C verify Dent(D) ≤ 1: if S is the union of the
supports of the functions in D then S must be countable. Then, the characteristic
function χS verify that D ⊆ B[χS , 1].

On the other hand Dent(C) ≥ 2 since if D ⊆ C has radius rad(D) < δ < 2
then C ⊆ co(C \D). To prove this last claim suppose that D ⊆ B(f, δ), f ∈ E.
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Then for each t /∈ support(f) we have that g(t) ∈ [0, δ] whenever g ∈ D. Now
take an arbitrary g ∈ D and fix m ∈ N. Since support(f) is countable, we can
take m points t1, ..., tm ∈ [0, 1] \ (support(f)∪ support(g)). Define m functions
g1, ..., gm as gi = g + 2χ{ti} for every i = 1, ...,m. Then∣∣∣∣g1(t) + ...+ gm(t)

m
− g(t)

∣∣∣∣ ≤ 2

m
for every t ∈ [0, 1]

and gi /∈ D since gi(ti) = 2 > δ and ti /∈ support(f).

The connection between representability of measures and dentability is exhib-
ited in the following theorem which is a quantitative version of [20, p.71, theorem
1] and it shows that we can replace rad by Dent in the definition of index of rep-
resentability. The proof is inspired on [3, p. 21, lemma 2.2.5].

Theorem 4.8. Let m : Σ → E be a µ-continuous vector measure of bounded
variation. Then

R(m) = inf{ε > 0 : for every A ∈ Σ+ there exists

B ∈ Σ+
A with Dent(ΓB) < ε}

Proof. Let us denote by L the infimum of the right hand side of the the expression
above. It is clear that L ≤ R(m) since Dent(ΓB) ≤ rad(ΓB) for every B ∈ Σ+.
Let us prove the converse inequality. If L = ∞ then the equality holds; otherwise
fix an arbitrary ε > L. Given A ∈ Σ+ there exists B ∈ Σ+

A and a ball B(z, ε) such
that ΓB * co(ΓB \B(z, ε)). Take B′ ∈ Σ+

B with

(8)
m(B′)

µ(B′)
/∈ co(ΓB \B(z, ε)).

If we show that there exists B′′ ∈ Σ+
B′ ⊆ Σ+

A with ΓB′′ ⊆ B(z, ε) then the proof
is over. We will check this by contradiction: suppose that for every B′′ ∈ Σ+

B′

there exists B′′′ ∈ Σ+
B′′ with

∥∥∥m(B′′′)
µ(B′′′) − z

∥∥∥ ≥ ε. Construct a maximal family

C = {B′′′i : i ∈ N} of disjoint subsets of B′ having positive measure (it has to be
countable since µ(B′) <∞) verifying∥∥∥∥m(B′′′i )

µ(B′′′i )
− z
∥∥∥∥ ≥ ε, for every i ∈ N

If we write B′′′0 =
⋃
n∈NB

′′′
n then µ(B′ \B′′′0 ) = 0 by maximality. Hence

m(B′)

µ(B′)
=
∞∑
i=1

µ(B′′′i )

µ(B′′′0 )

m(B′′′i )

µ(B′′′i )
∈ co(ΓB \B(z, ε))

which contradicts (8). �

Corollary 4.9. Let m : Σ → E be a µ-continuous vector measure of bounded
variation. Then

R(m) ≤ sup {Dent(C) : C ⊆ AR(m)}

In particular, if every subset of E is dentable then m is representable.
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4.1. Fragmentability in dual spaces. In [14], Jayne and Rogers introduced the
following concept: a topological space (X, τ) is fragmented by a metric ρ on X
if for every subset C of X and ε > 0 there exists a τ -open subset U of X such
that C ∩ U has ρ-diameter less than ε. The connection between RNP and ω∗-
fragmentability in Banach spaces was originally established by Namioka, Phelps
and Stegall (see [18] for more details and references). They proved that every
subset of E∗ is dentable if and only if every subset of (E∗, ω∗) is fragmentable.
We are going to quantify this result in terms of indexes.

Definition 4.10. For each subset C of E∗ define

Frag(C) = inf {ε > 0 : there is U ∈ ω∗ such that rad (C ∩ U) < ε}

See [1] for related indexes.
A ω∗-slice of a subset C of E∗ is a nonempty set S = H ∩ C where H is a

ω∗-open halfspace of the form

H = {x∗ ∈ E∗ : 〈x, x∗〉 > α}
for some α ∈ R and x ∈ E.

The following theorem is a version for the ω∗-topology of theorem 4.2 with
identical proof. See also [3, p. 52, theorem 3.4.1] for the original enunciate.

Theorem 4.11. Suppose that ε > 0. Let J , K0, K1 be ω∗-compact convex subsets
of E∗ and z∗ ∈ E∗ such that

(i) J ⊆ co (K0 ∪K1)
(ii) K0 ⊂ J and K0 ⊂ B(z∗, ε)

(iii) J \K1 6= ∅
Then for every ε′ > ε there is a ω∗-slice S of J which contains a point of K0 and
is contained in B(z∗, ε′).

An analogue result to lemma 4.3 for dual spaces with the ω∗-topology can be
proved.

Lemma 4.12. Suppose that C is a subset of E∗ that admits a ω∗-slice S = H ∩C
contained in

⋃n
i=1B(x∗i , ε). Then for every ε′ > ε there exists a ω∗-slice S′ of C

contained in B(x∗k, ε
′) for some k ∈ {1, ..., n}.

The following proposition is based on the proof of [19, p. 737, lemma 3].

Proposition 4.13. Let C be a bounded subset of E∗. Then

Frag(Ext(coω
∗
(C))) = inf {ε > 0 : there is ω∗-slice S of C with rad(S) < ε}

= inf {ε > 0 : there is ω∗-slice S of C with α(S) < ε}
where α is the Kuratowski measure of noncompactness (see lemma 4.4).

Proof. The proof of the equality between the two infimums of the right hand of
the expression is totally analogue to the one of lemma 4.4. We will denote this
common value by L.

We start by showing that Frag(Ext(coω
∗
(C))) ≤ L. Suppose that H ∩ C is a

ω∗-slice of C with radius less than ε. The convex ω∗-compact sets J = coω
∗
(C),

K0 = coω
∗
(H ∩ C) and K1 = coω

∗
(Hc ∩ C) verify: (i) J ⊆ coω

∗
(K0 ∪K1),

(ii) K0 ⊆ J and rad(K0) = rad(H ∩ C) < ε, (iii) J \ K1 6= ∅ since otherwise
C ⊆ J ⊆ K1 ⊆ Hc implies that C ∩H = ∅.
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By theorem 4.11 we deduce that there exists a ω∗-slice S′ = H ′ ∩ J of J with
rad(S′) < ε. Therefore H ′ ∩ Ext(coω

∗
(C)) 6= ∅ is a relatively ω∗-open subset of

Ext(coω
∗
(C)) with radius less than ε.

To prove that the equality Frag(Ext(coω
∗
(C))) = L holds we will suppose that

Frag(Ext(coω
∗
(C))) < L and get a contradiction. There exists a ω∗-open set U

with rad(U ∩ Ext(coω
∗
(C))) < L. If x∗0 ∈ U ∩ Ext(coω

∗
(C)), by Choquet’s

lemma [8, p.111 , lemma 3.6.9], there is a ω∗-open halfspace H such that x∗0 be-
longs to H ∩ Ext(coω

∗
(C)) ⊆ U ∩ Ext(coω

∗
(C)). Note that H ∩ Ext(coω

∗
(C))

has radius less than L, so we can reason as above and get a ω∗-slice H ′ ∩ J of
J = coω

∗
(C) with radius less than L. The intersection H ′ ∩C is a nonempty slice

of C with rad(H ′ ∩ C) < L. �

Proposition 4.14. Suppose that U is a relatively ω∗-open subset of Ext(C) for
some ω∗-compact convex subset C ⊆ E∗ with Frag(Ext(C)) > δ. We can find
sequences (x∗n)n ⊆ U , (xn)n ⊆ BE and (αn)n ⊆ R such that for every n ∈ N

(9) 〈xn, x∗n〉 > αn + δ > αn > 〈xn, x∗k〉 whenever k 6= n

Proof. We construct this sequence by induction. Fix x∗1 ∈ U . We have that U *
B(x∗1, δ) since Frag(Ext(C)) > δ, so we can find x∗2 ∈ U , α1 ∈ R, a ∈ BE such
that 〈a, x∗1〉 > α + δ > α > 〈a, x∗2〉 by Hanh-Banach. Take x1 = a, α1 = α and
x2 = −a, α2 = −α− δ.

Suppose that n ≥ 2 and we have constructed (x∗i )
n
i=1 ⊆ U , (xi)

n
i=1 ⊆ BE and

(αi)
n
i=1 ⊆ R for i = 1, ..., n satisfying

〈xi, x∗i 〉 > αi + δ > αi > sup
k 6=i
{〈xi, x∗k〉}

for every i = 1, ..., n.
Consider the relatively ω∗-open subset of Ext(C) given by

Wn :=
n−1⋂
i=1

{x∗ ∈ U : αi > 〈xi, x∗〉} ∩ {x∗ ∈ U : 〈xn, x∗〉 > αn + δ}

Note that x∗n ∈Wn, so by Choquet’s lemma we can find a slice Sn of Ext(C) with
x∗n ∈ Sn ⊆ Wn. Moreover Sn is not contained in co (x∗1, .., x

∗
n) + δBE∗ , since

otherwise α(Sn) ≤ δ would imply, by lemma 4.12, that Frag(Ext(C)) ≤ δ which
is a contradiction.

Thus using Hanh-Banach we can find x∗n+1 ∈ Sn, xn+1 ∈ BE and αn+1 ∈ R
such that

〈xn+1, x
∗
n+1〉 > αn+1 + δ > αn+1 > 〈xn+1, x

∗
i 〉 for i = 1, ..., n .

Now consider
Vn+1 := Sn ∩ {x∗ : 〈xn+1, x

∗〉 > αn+1 + δ} (x∗n+1 ∈ Vn+1)

Vn := Sn ∩ {x∗ : 〈xn+1, x
∗〉 < αn+1} (x∗n ∈ Vn)

By Choquet’s lemma there is a ω∗-slice S′n of Ext(C) with x∗n ∈ S′n ⊆ Vn. Since
S′n is not contained in

co (x∗1, ..., x
∗
n+1) + δBE∗

there are elements y∗n ∈ S′n, βn ∈ R and yn ∈ BE such that

〈yn, y∗n〉 > βn + δ > βn > 〈yn, x∗i 〉 for every i = 1, ..., n+ 1 .
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We then redefine x∗n := y∗n, xn := yn and αn := βn so that

〈xi, x∗i 〉 > αi + δ > αi > sup
k 6=i
{〈xi, x∗k〉}

for every i = 1, ..., n+ 1. �

Corollary 4.15. Suppose that U is a relatively ω∗-open subset of Ext(C) for some
ω∗-compact convex subset C ⊆ E∗ with Frag(Ext(C)) > δ. Given m ∈ N there
arem relatively ω∗-open (nonempty) subsets U1, ..., Um of U and x1, ..., xm ∈ BE
such that

(10) inf
{
〈xj , y∗j − y∗〉 : y∗j ∈ Uj , y∗ ∈ ∪i 6=jUi

}
≥ δ

for every j = 1, ...,m

Proof. By proposition 4.14 there exist sequences (x∗n)n ⊆ U , (xn)n ⊆ BE and
(αn)n ⊆ R verifying equation (9). Define for every j = 1, ...,m

Uj = {x∗ ∈ U : 〈xj , x∗〉 > αj + δ} ∩
m⋂

k=1,k 6=j
{x∗ ∈ U : 〈xk, x∗〉 < αk}

Note that x∗j ∈ Uj so they are nonempty. It is clear that they satisfy the condition
of the enunciate �

Proposition 4.16. If C is convex and ω∗-compact with Frag(Ext(C)) > ε then
there exists a countable subset C0 ⊆ C such that every slice of C0 has diameter
greater than ε.

Proof. Suppose now that Frag(Ext(C)) > δ > ε. The next argument is inspired
by a van Dulst and Namioka result [22, p. 8, proposition 2].

Consider D = {∅} ∪ {1, ...,m} ∪ {1, ...,m}2 ∪ .... If d ∈ D has the form
d = (d1, ..., dk) then we write di = (d1, ..., dk, i) for i ∈ {1, ...,m}. The length of
d is denoted by |d|.

Using corollary 4.15 we can construct a tree of ω∗-open sets {Ud : d ∈ D} such
that Udi ⊆ Ud and d(coω

∗
(Udj), coω

∗∪i 6=jUdi) > δ if d ∈ D and j ∈ {1, ...,m}.
For d ∈ D we write Kd = coω

∗
(Ud). We claim that there exists (sd)d∈D with

sd ∈ Kd and sd =
∑m

i=1
1
msdi for every d ∈ D. Write for every e ∈ D

Ae :=

{
(td)d∈D ∈

∏
d∈D

Kd : te =
m∑
i=1

1

m
tei

}
.

Note that (xd)d∈D has to belong to the intersection of all Ae (e ∈ D), so by ω∗-
compactness we just have to show that

⋂
{Ae : e ∈ D, |e| ≤ n} 6= ∅ for every

n ∈ N. To see this we are going to construct an element belonging to this finite
intersection. Choose for every d ∈ D with |d| > n an element td ∈ Kd. For the
rest we use downward induction. Fix d ∈ D and suppose that we have defined tdi
for each i ∈ {1, ..., n}. Then take td :=

∑m
i=1

1
m tdi. It is clear that the so defined

element (td)d∈D belongs to the previous intersection.
Now consider the setC0 = {sd : d ∈ D} and suppose that x∗∗ ∈ E∗∗ and α ∈ R

are elements that determine a nonempty slice S = {sd : 〈x∗∗sd〉 > α} of C0. If
sd ∈ S then one of the elements sdi must also belong to S since sd =

∑m
i=1

1
msdi.

The diameter of S is then greater than ‖sd−sdi‖ ≥ m−1
m δ. Takingm larger enough

so that m−1
m δ > ε the proof is over. �
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Remark 4.17. Proposition 4.16 is a strengthening of [22, p. 8, proposition 2] in
the sense that let us construct m-adic trees for every m ∈ N.

Finally, as we announced at the beginning of this section, we are going to show
the relationship between the indexes of dentability and fragmentability.

Theorem 4.18. If C is a convex ω∗-compact subset of E∗ then

sup {Dent(D) : D ⊆ C} ≤ sup {Frag(D) : D ⊆ C} ≤
≤ 2 sup {Dent(D) : D ⊆ C, D countable}

(11)

Proof. For every D ⊆ C the set Ext(coω
∗
(D)) is contained in C. By proposi-

tion 4.13 we have that Dent(D) ≤ Frag(Ext(coω
∗
(D))) so the first inequality is

true. On the other hand, again by proposition 4.13 we can claim that Frag(D) ≤
Frag(Ext(coω

∗
(D))). Combining this with proposition 4.16 we deduce the second

inequality. �

Remark 4.19. We do not know if constant 2 in theorem 4.18 is sharp.

4.2. Dentability versus index of weak noncompactness. It is well-known that
every weakly compact set in a Banach spaces is dentable (see [3, p. 60, theorem
3.6.1]). We will give a quantitative version of this result using the following mea-
sure of weak noncompactness

γ(H) = sup
{∣∣∣lim

n
lim
m
x∗m(xn)− lim

m
lim
n
x∗m(xn)

∣∣∣ : (x∗m)m ⊆ BE∗ , (xn)n ⊆ H
}

where the supremum is taken over those values for which the previous limits exist.

Proposition 4.20. If C is a bounded convex subset of E then

(12) Dent(C) ≤ γ(C)

Proof. Using the identification E ⊆ E∗∗ we will write C ′ := Ext(coω
∗
(C)) ⊆

E∗∗. We point out that when we write Dent(C) we are looking at C as a subset of
E and not of E∗∗.

Fix an element x0 ∈ C and suppose that δ < Dent(C). There exists x∗∗1 ∈ C ′
which does not belong to B[x0, δ]. Hence we can find an element x∗1 ∈ BE∗ and a
real number α1 such that

〈x∗∗1 , x∗1〉 > α1 + δ > α1 > 〈x0, x
∗
1〉

By density there exists x1 ∈ C with

〈x1, x
∗
1〉 > α1 + δ.

Suppose now that we have constructed sequences xk ∈ C, x∗k ∈ BE∗ , αk ∈ R for
k = 1, ..., n and an element x∗∗n ∈ C ′ such that

〈xj , x∗k〉 > αk + δ > αk > 〈xi, x∗k〉 for every i < k and j ≥ k

〈x∗∗n , x∗k〉 > αk + δ for each k = 1, ...n.

The ω∗-open set

W =
n⋂
k=1

{x∗∗ : 〈x∗∗, x∗k〉 > αk + δ}
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has nonempty intersection with C ′ since x∗∗n ∈ C ′ ∩W . Using Choquet’s lemma
we can find a ω∗-slice S of C ′ such that x∗∗n ∈ S ⊆ W . We claim that this slice
cannot be contained in

Kn = co (x0, ..., xn) + δBE∗∗

Assume that S is contained in Kn so α(S) ≤ δ (recall that α is the Kuratowski
measure of noncompactness) and then Frag(C ′) ≤ δ by proposition 4.13. But
Frag(C ′) is equal to Dent(C) again by proposition 4.13, since a ω∗-slice of C as
a subset of E∗∗ is a slice of C regarded as a subset of E. This gives a contradiction
that proves the claim.

We can then find x∗∗n+1 ∈ S which does not belong to the ω∗-compact set Kn.
By Hanh-Banach, there exists x∗n+1 ∈ BE∗ and αn+1 ∈ R such that

〈x∗∗n+1, x
∗
n+1〉 > αn+1 + δ > αn+1 > 〈xi, x∗n+1〉 for every i = 1, ..., n

Since x∗∗n+1 ∈W ∩{x∗∗ : 〈x∗∗, x∗n+1〉 > αn+1 + δ}, by density there is xn+1 ∈ C
belonging to the same ω∗-open set (C is convex).

This way, we have constructed by induction sequences (xj)j ⊆ C, (x∗k)k ⊆ B∗E
and (αk)k ⊆ R such that

〈xj , x∗k〉 > αk + δ > αk > 〈xi, x∗k〉 for every i < k and j ≥ k
Passing to subsequences we can suppose that limk αk = α exists (note that C is

bounded), limn 〈xn, x∗k〉 exists for every k ∈ N and limk 〈xn, x∗k〉 exists for every
n ∈ N. Taking further subsequences we may assume that the following double
limits exist and by construction they must satisfy

lim
k

lim
n
〈xn, x∗k〉 − lim

n
lim
k
〈xn, x∗k〉 ≥ δ.

�

Remark 4.21. Inequality (12) is sharp. For E = c0 and C = Bc0 we have that
γ(Bc0) = 1 (see [16, p. 394, example 2.7]) and Dent(Bc0) = 1 (it can be easily
seen that every slice of Bc0 has diameter equal to 2).

Combining theorem 4.8 with propositions 2.7 and 4.20 we deduce the following
corollary.

Corollary 4.22. Let (Ω,Σ, µ) be a finite measure space and T : L1(µ) → E a
continuous linear operator. Then

d(T, Lrep(L
1(µ), E)) ≤ sup {Dent(C) : C ⊆ T (BL1(µ))} ≤ γ(T (BL1(µ))).

In particular, every weakly compact operator is representable.
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[15] Miroslav Kačena, Ondřej F. K. Kalenda, and Jiří Spurný, Quantitative Dunford-Pettis property,
Adv. Math. 234 (2013), 488–527. MR 3003935

[16] Andrzej Kryczka, Stanisław Prus, and Mariusz Szczepanik, Measure of weak noncompact-
ness and real interpolation of operators, Bull. Austral. Math. Soc. 62 (2000), no. 3, 389–401.
MR MR1799942 (2001i:46116)

[17] K. Musial, Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste 23
(1991), no. 1, 177–262 (1993), School on Measure Theory and Real Analysis (Grado, 1991).
MR MR1248654 (94k:46084)

[18] I. Namioka, Fragmentability in Banach spaces: interaction of topologies, Rev. R. Acad.
Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 104 (2010), no. 2, 283–308. MR 2757242
(2012d:54031)

[19] I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42
(1975), no. 4, 735–750. MR 0390721 (52 #11544)

[20] M. A. Rieffel, Dentable subsets of Banach spaces, with application to a Radon-Nikodým the-
orem, Functional Analysis (Proc. Conf., Irvine, Calif., 1966), Academic Press, London, 1967,
pp. 71–77. MR 0222618 (36 #5668)

[21] D. van Dulst, Characterizations of Banach spaces not containing l1, CWI Tract, vol. 59, Cen-
trum voor Wiskunde en Informatica, Amsterdam, 1989. MR 90h:46037

[22] D. van Dulst and I. Namioka, A note on trees in conjugate Banach spaces, Nederl. Akad.
Wetensch. Indag. Math. 46 (1984), no. 1, 7–10. MR 748973 (86c:46009)

[23] Kôsaku Yosida and Edwin Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72
(1952), 46–66. MR 0045194 (13,543b)

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE MURCIA, 30100 ESPINARDO (MUR-
CIA), SPAIN

E-mail address: beca@um.es

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE MURCIA, 30100 ESPINARDO (MUR-
CIA), SPAIN

E-mail address: antonio.perez7@um.es

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE MURCIA, 30100 ESPINARDO (MUR-
CIA), SPAIN

E-mail address: matias@um.es


	1. Introduction
	1.1. Notation and terminology

	2. Representability of measures
	2.1. Representability of operators

	3. Gelfand derivative
	4. Index of dentability
	4.1. Fragmentability in dual spaces
	4.2. Dentability versus index of weak noncompactness

	References

