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0. Introduction.

Given a space X we denote by K(X) the family of all compact subsets of X.
One of about a dozen equivalent definitions says that X is a Lindelöf Σ-space (or has
the Lindelöf Σ-property) if there exists a second countable space M and a compact-
valued upper semicontinuous map ϕ : M → X such that

⋃{ϕ(x) : x ∈ M} = X
(see, e.g., [RJ, Section 5.1]). It is worth mentioning that in Functional Analysis,
the same concept is usually referred to as a countably K-determined space.

Suppose that X is a Lindelöf Σ-space and hence we can find a compact-valued
upper semicontinuous surjective map ϕ : M → X for some second countable space
M . If we let FK =

⋃{ϕ(x) : x ∈ K} for any compact set K ⊂ M then the family
F = {FK : K ∈ K(M)} consists of compact subsets of X, covers X and K ⊂ L
implies FK ⊂ FL. We will say that F is an M -ordered compact cover of X.

The class M of spaces with an M -ordered compact cover for some second
countable space M , was introduced by Cascales and Orihuela in [CO2]. They
proved, among other things, that a Dieudonné complete space is Lindelöf Σ if and
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only if it belongs to M. We proved in the previous paragraph that any Lindelöf
Σ-space belongs to M; however, X ∈ M does not even imply that X is Lindelöf
(see [CO2] and [Tk]) so M is a new class which seems to be interesting in itself.

Let P be the set of the irrationals which we will identify with ωω; a family
A of subsets of a space X is P-directed if A = {Ap : p ∈ P} and p � q implies
Ap ⊂ Aq. The spaces which have P-directed compact covers were extensively studied
in Functional Analysis (see [Ca], [CO1], [FS1], [FS2], [KS] and [Ta]). Talagrand
proved in [Ta] that if X is compact then Cp(X) has a P-directed compact cover
if and only if Cp(X) is K-analytic. Cascales [Ca] extended Talagrand’s results by
proving that, for angelic spaces, to have a P-directed compact cover is equivalent
to K-analyticity. Tkachuk [Tk] studied systematically the topology of the spaces
which have a P-directed compact cover (calling the respective spaces P-dominated);
it was proved in [Tk] that compactness can be omitted in the mentioned Talagrand
result, i.e., for any Tychonoff X, the space Cp(X) is K-analytic if and only if it is
P-dominated.

Following the terminology of [Tk] we say that a space X is M -dominated (or
dominated by space M) if X has an M -ordered compact cover, i.e., there exists a
family F = {FK : K ∈ K(M)} ⊂ K(X) such that

⋃ F = X and K ⊂ L implies
FK ⊂ FL for any K, L ∈ K(M). In this paper we study the general topological and
categorical properties of the class M of spaces dominated by a second countable
space.

We prove, in particular, that for any Tychonoff X, the space Cp(X) has the
Lindelöf Σ-property, if and only if it is dominated by a second countable space.
We also show that, if X is a compact space of countable tightness and (X × X)\Δ
belongs to the class M then X is metrizable. Here Δ = {(x, x) : x ∈ X} is the
diagonal of the space X. It turns out that, under MA(ω1), if X is compact and
(X × X)\Δ is dominated by a Polish space then X is metrizable. As in [Tk], we
introduce the notion of a strong M -domination to prove that if X is compact and
the space (X × X)\Δ is strongly dominated by a second countable space then X
is metrizable. Besides, under the continuum Hypothesis (CH), if X is compact and
Cp(X) is strongly dominated by a second countable space then X is countable.
Hopefully, our study of M -dominated spaces will find applications in Functional
Analysis the same as P-domination already did.

1. Notation and terminology.

All spaces under consideration are assumed to be Tychonoff. If X is a space
then τ(X) is its topology and τ∗(X) = τ(X)\{∅}. If X is a space and A ⊂ X then
τ(A, X) = {U ∈ τ(X) : A ⊂ U}; we will write τ(x, X) instead of τ({x}, X). Given
a space Z the family K(Z) consists of all compact subsets of Z; we use the symbol
P to denote the set of the irrational numbers which we identify with ωω. Given
p, q ∈ P we write p � q if p(n) � q(n) for any n ∈ ω; we use the notation p �∗ q (or
p =∗ q) if there exists m ∈ ω such that p(n) � q(n) (or p(n) = q(n) respectively)
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for all n � m. The symbol Q stands for the set of the rational numbers with the
topology induced from the real line R and N = ω\{0}.

A family of sets A is P-directed if A = {Ap : p ∈ P} and p � q implies Ap ⊂ Aq.
A family B is M -ordered for some space M if B = {BK : K ∈ K(M)} while K ⊂ L
implies BK ⊂ BL. A space X is P-dominated if it has a P-ordered compact cover;
in general, the space X is dominated by a space M if it has an M -ordered compact
cover. Say that X is strongly M -dominated if it has an M -ordered compact cover
C such that for every compact subset K ⊂ X there exists C ∈ C with K ⊂ C.

If X is a space and C is a cover of X then a family F is called a network modulo
C if for any C ∈ C and U ∈ τ(C, X) there is F ∈ F with C ⊂ F ⊂ U . A family
N of subsets of a space X is a network in X if it is a network modulo the cover
{{x} : x ∈ X}. The network weight nw(X) of a space X is the minimal cardinality
of a network in X. A space X is cosmic if nw(X) = ω.

A cover C of X is compact if all elements of C are compact. A space X is
Lindelöf Σ if it has a countable network modulo a compact cover of X. Say that
X is an ℵ0-space if it has a countable network modulo K(X). The space X is
hemicompact if there exists a countable family F of compact subsets of X such that
every K ∈ K(X) is contained in an element of F .

If X is a space then Δ = {(x, x) : x ∈ X} is its diagonal. The space X
has a small diagonal if, for any uncountable set A ⊂ (X × X)\Δ there exists an
uncountable B ⊂ A such that B ∩ Δ = ∅. The spread s(X) of a space X is the
supremum of cardinalities of discrete subspaces of X and ext(X) = sup{|D| : D
is a closed and discrete subset of X}. Now, hl(X) = sup{l(Y ) : Y ⊂ X} is the
hereditary Lindelöf number of X. The cardinal iw(X) = min{κ : the space X has a
weaker topology of weight κ} is called i-weight of X. Recall that iw(X) � nw(X)
and hl(X) � nw(X) for any space X.

If X is a space and A ⊂ X we say that a family B of subsets of X is an outer
network (base) of the set A in X if (B ⊂ τ(X) and) for any U ∈ τ(A, X) there exists
B ∈ B such that A ⊂ B ⊂ U . Given an infinite cardinal κ, recall that t(X) � κ if
A =

⋃{B : B ⊂ A and |B � κ} for any A ⊂ X. A continuous map f : X → Y is
compact-covering if for any L ∈ K(Y ) there exists K ∈ K(X) such that f(K) = L.
For any spaces X and Y the space Cp(X, Y ) consists of continuous functions from
X to Y with the topology induced from Y X . The space Cp(X, R) is denoted by
Cp(X).

The rest of our notation is standard and follows [En]; our reference book on
Cp-theory is [Ar2].

2. General properties of spaces dominated by second countable ones.

Our purpose is to find interesting classes in which domination by a second
countable space coincides with the Lindelöf Σ-property. We show that this coinci-
dence takes place for the spaces Cp(X) and sometimes for the complements of the
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diagonal of compact spaces. The following result summarizes the simplest properties
of spaces dominated by second countable ones.

2.1. Theorem. (a) Every Lindelöf Σ-space is dominated by a second countable
space;
(b) if X is dominated by a second countable space then any continuous image of X
is also dominated by a second countable space;
(c) if X is dominated by a second countable space then any closed subspace of X
is also dominated by a second countable space;
(d) if X =

⋃
i∈ω Xi and Xi is dominated by a second countable space for all i ∈ ω

then X is dominated by a second countable space;
(e) if Xi is dominated by a second countable space for all i ∈ ω then the space
X =

∏
i∈ω Xi is dominated by a second countable space;

(f) if X is a space and Yi ⊂ X is dominated by a second countable space for all
i ∈ ω then Y =

⋂
i∈ω Yi is also dominated by a second countable space;

(g) a space X is Lindelöf Σ if and only if it is Dieudonné complete (i.e., homeomor-
phic to a closed subspace of a product of metrizable spaces) and dominated by a
second countable space;
(h) if X is dominated by a second countable space then ext(X) = ω.

Proof. The statement of (a) was proved in the first paragraph of Introduction;
the proofs of (b) and (c) are straightforward and can be left to the reader. To see
that (d) is true suppose that Xi has an Mi-ordered compact cover Fi = {P (K, i) :
K ∈ K(Mi)} for some second countable space Mi for every i ∈ ω. The space
M =

⊕
i∈ω Mi is second countable; we identify every Mi with the corresponding

clopen subset of M . Given any K ∈ K(M) the set NK = {i ∈ ω : K ∩ Mi �= ∅} is
finite so the set FK =

⋃{P (K ∩ Mi, i) : i ∈ NK} is compact. It is immediate that
the family {FK : K ∈ K(M)} is an M -ordered compact cover of X.

(e) For each i ∈ ω fix a second countable space Mi and an Mi-ordered compact
cover Fi = {Q(K, i) : K ∈ K(Xi)} of the space Xi. For the space M =

∏
i∈ω Mi

let pi : M → Mi be the natural projection for every i ∈ ω. Given any K ∈ K(M),
the set FK =

∏{Q(pi(K), i) : i ∈ ω} belongs to K(X). It is an easy exercise that
the family {FK : K ∈ K(M)} is an M -ordered compact cover of X.

It is standard to deduce (f) from (c) and (e); the statement of (g) was proved
in [CO2]. If X is dominated by a second countable space and D is a closed discrete
subspace of X then D is also dominated by a second countable space by (c). Since
D is also Dieudonné complete, it must be Lindelöf and hence countable by (g). This
shows that ext(X) = ω, i.e., (h) is proved.

2.2. Proposition. The following conditions are equivalent for any space X:
(a) X has a P-directed compact cover, i.e., X is dominated by the irrationals in

the sense of [Tk];
(b) X is P-dominated;
(c) X is dominated by a Polish space.
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Proof. (a)=⇒(b) Fix a P-directed compact cover {Q(p) : p ∈ P} of the space X
and let πi : P → ω be the projection of P onto its i-th factor, i.e., πi(s) = s(i) for any
s ∈ P. If K ∈ K(P) then πi(K) is a finite set so the number sK(i) = max(πi(K)) is
well-defined for any i ∈ ω and hence we have an element sK ∈ P for any K ∈ K(P).
It is immediate that K ⊂ L implies that sK � sL; let FK = Q(sK) for any
K ∈ K(P). It is straightforward that F = {FK : K ∈ K(P)} is a P-ordered family
of compact subsets of X. To see that F is a cover of X fix any point x ∈ X and
p ∈ P with x ∈ Q(p). The set K =

∏{{0, . . . , p(i)} : i ∈ ω} is compact and sK = p;
as a consequence, x ∈ Q(p) = Q(sK) = FK so F is a compact P-ordered cover of
X, i.e., X is P-dominated.

(b)=⇒(a) Assume that the space X is P-dominated and fix a respective compact
cover {FK : K ∈ K(P)}. For any p ∈ P the set K(p) =

∏{{0, . . . , p(i)} : i ∈ ω} is
compact; let Q(p) = FK(p). It is easy to see that the family Q = {Q(p) : p ∈ P} is
P-directed. To see that Q is a cover of X take a point x ∈ X; there exists K ∈ K(P)
with x ∈ FK . Consider the point p ∈ P such that p(i) = max(πi(K)) for every
i ∈ ω. Then K ⊂ K(p) and hence x ∈ FK ⊂ FK(p) so Q is a P-directed compact
cover of X.

The implication (b)=⇒(c) being clear, assume that a space X is dominated by a
Polish space M and take a respective M -ordered compact cover {F (L) : L ∈ K(M)}.
There exists an open continuous onto map ϕ : P → M ; observe that the family
F = {F (ϕ(K)) : K ∈ K(P)} is P-ordered. To see that F covers X take any point
x ∈ X and a compact set L ⊂ M such that x ∈ F (L). Any open map between Polish
spaces is inductively perfect and hence compact-covering (see e.g., [En, 5.5.8]) so
there exists K ∈ K(P) such that ϕ(K) = L. Therefore x ∈ F (ϕ(K)) ∈ F and hence
F is a P-ordered compact cover of X, i.e., we settled (c)=⇒(b).

2.3. Corollary. A Dieudonné complete space is K-analytic if and only if it is
dominated by a Polish space.

Proof. It was proved in [CO2] that a Dieudonné complete space is K-analytic if
and only if it has a P-directed compact cover; Proposition 2.2 does the rest.

2.4. Corollary. For any space X, if Cp(X) is dominated by a Polish space then it
is K-analytic.

Proof. It was proved in [Tk] that any P-dominated space Cp(X) is K-analytic so
we can apply Proposition 2.2 to finish our proof.

Cascales and Orihuela proved (using a different terminology), that if X is com-
pact and X2\Δ is strongly dominated by the irrationals then X is metrizable (see
[CO1, Theorem 1]). It is a very interesting question whether the word “strongly”
can be omitted in this statement. Our plan is to show that this is true under
MA(ω1). We will use the methods developed in [CKS] adapted to our situation.
For the reader’s convenience we avoid citing very general technical results from
[CKS] and give direct short proofs here for some particular cases we need.
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2.5. Proposition. Suppose that X is dominated by a second countable space M
and a collection {FK : K ∈ K(M)} witnesses this. Take a countable base B in
M such that the union and the intersection of any finite subfamily of B belongs
to B. For any U ∈ B let G(U) =

⋃{FK : K ∈ K(M) and K ⊂ U}. Fix a set
K ∈ K(M) and a family BK = {Un : n ∈ ω} ⊂ B such that Un+1 ⊂ Un for each
n ∈ ω and BK is an outer base of K in M ; then FK ⊂ CK =

⋂{G(U) : U ∈ BK}.
If S = {yn : n ∈ ω} ⊂ X is a sequence such that yn ∈ G(Un) for all n ∈ ω, then
(a) the set S is compact and hence the set D of cluster points of S is non-empty;
(b) there exists a compact set QK such that D ⊂ QK ⊂ CK .
Proof. Take a set Kn ∈ K(M) such that Kn ⊂ Un and yn ∈ FKn for any n ∈ ω.
It is straightforward that the set Lm = K ∪ (

⋃{Ki : i � m}) is compact for any
m ∈ ω. The sequence {yn} is eventually in the compact set FLm

which shows that
the set S is compact, D �= ∅ and D ⊂ FLm

for any m ∈ ω. Therefore D is contained
in the compact set QK =

⋂{FLm
: m ∈ ω} ⊂ CK as promised.

2.6. Proposition. Suppose that X is dominated by a second countable space M
and a collection {FK : K ∈ K(M)} witnesses this. Fix a countable base B in M
such that the union and the intersection of any finite subfamily of B belongs to B.
For any U ∈ B let G(U) =

⋃{FK : K ∈ K(M) and K ⊂ U}. Then there exists a
family C in the space X with the following properties:
(a) if C ∈ C and A ⊂ C is a countable set then the set A is compact and A ⊂ C;

in particular, each C ∈ C is countably compact;
(b) for every K ∈ K(M) there exists a set CK ∈ C such that FK ⊂ CK and hence

C is a cover of X;
(c) the family N = {G(U) : U ∈ B} is a network with respect to C.
Proof. Fix any compact subset K of the space M and observe that we can choose
a family BK = {Un : n ∈ ω} ⊂ B such that Un+1 ⊂ Un for each n ∈ ω and BK is
an outer base of K in M . It is evident that FK ⊂ CK =

⋂{G(U) : U ∈ BK}. Let
C = {CK : K ∈ K(M)}; it is clear that the property (b) holds for CK .

If K ∈ K(M) and {G(Un) : n ∈ ω} is not a network for CK then we can choose
a point yn ∈ G(Un)\W for some W ∈ τ(CK , X). The sequence {yn} must have a
cluster point in CK by Proposition 2.5 which contradicts the fact that {yn} ⊂ X\W
while CK ⊂ W . Therefore the family C has the property (c).

Furthermore, if A ⊂ CK is countable then we can choose an enumeration
{yn : n ∈ ω} of the set A. It is clear that yn ∈ G(Un) for all n ∈ ω and hence
we can apply Proposition 2.5 again to see that A = {yn : n ∈ ω} is compact. If
x ∈ A\CK then x ∈ A\A and hence x is a cluster point of the sequence S = {yn}.
However, all cluster points of S belong to CK by Proposition 2.5. This contradiction
shows that A ⊂ CK so (a) is proved as well.

Given a space X recall that a set A ⊂ X is relatively countably compact if every
sequence in A has a cluster point in X. The following result was implicitly proved
in [CO2] and [CKS].
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2.7. Corollary. Suppose that, in a space X, every relatively countably compact set
has compact closure. Then X is dominated by a second countable space if and only
if it has the Lindelöf Σ-property. In particular, an angelic space X is dominated by
a second countable space if and only if X is Lindelöf Σ.

Proof. It suffices to prove necessity so assume that X is dominated by a second
countable space. It follows from Proposition 2.6 that we can find a cover C of the
space X such that every C ∈ C is countably compact and there exists a countable
network N with respect to C. The family F = {C : C ∈ C} is a cover of X and all
elements of F are compact. It is standard that M = {N : N ∈ N} is a countbale
network with respect to F so X is a Lindelöf Σ-space.

2.8. Theorem. Suppose that Z is a compact space of countable tightness. Then
a set X ⊂ Z is dominated by a second countable space if and only if X has the
Lindelöf Σ-property.

Proof. Fix any set X ⊂ Z and assume that X is dominated by a second countable
space. For any set A ⊂ X we denote by clX(A) (or clZ(A)) the closure of the set
A in the space X (or in Z respectively). By Proposition 2.6, there exists a cover C
of the space X and a countable network N with respect to C such that for every
C ∈ C and any countable A ⊂ C the set clX(A) is compact and contained in C.

If C ∈ C and C is not closed in Z then we can find a point x ∈ clZ(C)\C.
By countable tightness of Z, there exists a countable A ⊂ C such that x ∈ clZ(A).
The set F = clX(A) ⊂ C is compact and hence closed in Z; as a consequence,
x ∈ clZ(A) ⊂ F ⊂ C. This contradiction shows that every C ∈ C is compact being
closed in X. Thus N is a countable network with respect to the compact cover C
of the space X, i.e., X has the Lindelöf Σ-property.

2.9. Theorem. If X is a compact space with t(X) � ω and X2\Δ is dominated
by a second countable space then X is metrizable.

Proof. The space X2 also has countable tightness [Ar1, Theorem 2.3.3] so we can
apply Theorem 2.8 to the set X2\Δ ⊂ X × X to conclude that X2\Δ is a Lindelöf
Σ-space; this easily implies that the diagonal Δ is a Gδ-subset of X × X and hence
X is metrizable by [En, 3.12.22(e)].

2.10. Corollary. If X is a Corson compact space or a first countable compact space
such that X2\Δ is dominated by a second countable space then X is metrizable.

2.11. Theorem. If X is a dyadic compact space and X2\Δ is dominated by a
second countable space then X is metrizable.

Proof. If X is first countable then it is metrizable by [En, 3.12.12(e)]. Therefore
we can assume that there exists a point x ∈ X of uncountable character in X.
Apply [En, 3.12.12(i)] to find an uncountable one-point compactification A of a
discrete space such that A ⊂ X and x is the unique non-isolated point of A. Then
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B = (A\{x}) × {x} is an uncountable closed discrete subspace of (X × X)\Δ while
we have ext(X2\Δ) = ω by Theorem 2.1(h), a contradiction.

The above results show that, to prove that any compact space X with X2\Δ
dominated by a second countable space is metrizable, it suffices to show that any
such space has a countable tightness. While we don’t know whether this implication
is true in general, we do present some partial progress in this direction.

2.12. Theorem. Assume MA(ω1) and suppose that X is a compact space such
that X2\Δ is P-dominated. Then X has a small diagonal and hence t(X) = ω.

Proof. Suppose that A = {zα : α < ω1} ⊂ X2\Δ and α �= β implies zα �= zβ . Fix
a P-directed cover {Kp : p ∈ P} of compact subsets of X2\Δ. Take pα ∈ P such
that zα ∈ Kpα

for any α < ω1.
It follows from MA(ω1) that there exists p ∈ P such that pα �∗ p for any

α < ω1. The set P =
⋃{Kq : q ∈ P and q =∗ p} is σ-compact and A ⊂ P .

Consequently, there is q ∈ P for which Kq ∩ A is uncountable; therefore the set
Kq ∩ A witnesses the small diagonal property of X. Since no space with a small
diagonal can have a convergent ω1-sequence, it follows from [JuS, Theorem 1.2] that
X has no free sequences of length ω1, i.e., t(X) � ω.

2.13. Corollary. Under MA(ω1), if X is a compact space such that X2\Δ is
dominated by a Polish space then X is metrizable.

Proof. Apply Proposition 2.2 to see that the space X2\Δ is dominated by P so
t(X) � ω by Theorem 2.11 and hence X is metrizable by Theorem 2.9.

In the rest of this section we study the spaces hereditarily dominated by a
second countable space. The motivation here is a result of Hodel established in
[Ho, Corollary 4.13]; it says that any hereditarily Lindelöf Σ-space is cosmic. We
will look at this hereditary property in function spaces to show that a somewhat
stronger statement is true in a general situation under Martin’s Axiom.

The following fact is an immediate consequence of [Tk, Proposition 2.7].

2.14. Proposition. If X is a space which has a countable network modulo a cover
of X by countably compact sets then Cp(X) is Lindelöf Σ-framed, i.e., there is a
Lindelöf Σ-space L such that Cp(X) ⊂ L ⊂ RX .

2.15. Theorem. A space Cp(X) is dominated by a second countable space if and
only if it is Lindelöf Σ.

Proof. We must only prove necessity. Suppose that Cp(X) is dominated by a
second countable space M and fix a family {FK : K ∈ K(M)} which witnesses this.
It follows from Proposition 2.14 and Proposition 2.6 that Cp(Cp(X)) is Lindelöf
Σ-framed. Applying [Ok, Theorem 3.5] we conclude that υ(Cp(X)) is a Lindelöf
Σ-space and hence υX is a Lindelöf Σ-space by [Ok, Corollary 3.6].
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Let π : Cp(υX) → Cp(X) be the restriction map. If GK = π−1(FK) then
GK is compact for any K ∈ K(M) (see [Tk, Theorem 2.6]). It is clear that G =
{GK : K ∈ K(M)} is a cover of Cp(υX) which shows that Cp(υX) is dominated
by M . By Proposition 2.6 we can find a countable network N modulo a cover C of
the space Cp(υX) such that every C ∈ C is countably compact. Every countably
compact subset of Cp(υX) is compact by [Ar2, Proposition IV.9.10] (see also [Or])
so C consists of compact subsets of Cp(υX) and hence Cp(υX) is a Lindelöf Σ-space.
Therefore Cp(X) is also Lindelöf Σ-space being a continuous image of Cp(υX).

2.16. Lemma. If every subspace of a space X is realcompact (i.e., X is hereditarily
realcompact) and dominated by a second countable space then X is cosmic.

Proof. Every subspace of X has to be Lindelöf Σ by Theorem 2.1(g) so we can
apply [Ho, Corollary 4.13] to conclude that X is cosmic.

2.17. Theorem. Under Martin’s axiom, the following conditions are equivalent
for any space X:
(a) every subspace of X is dominated by a second countable space;
(b) the space X is cosmic.

Proof. Every subspace of a cosmic space is cosmic and hence Lindelöf Σ so it
is dominated by a second countable space by Theorem 2.1(a). This proves that
(b)=⇒(a); observe that no additional axioms are needed for this conclusion.

Now assume that there exist non-cosmic spaces which are hereditarily domi-
nated by a second countable space and call every such space a counterexample. Ob-
serve first that a counterexample cannot be hereditarily Lindelöf by Lemma 2.16.
Therefore, if X is a counterexample then we can find a right-separated subspace
Y ⊂ X such that |Y | = ω1. It is immediate that Y is also a counterexample so we
can assume, without loss of generality, that X = Y , i.e., X is a scattered space. If
every countably compact subspace of X is compact and Y ⊂ X then we can apply
Proposition 2.6 to find a cover C of Y by countably compact (and hence compact)
subspaces such that there exists a countable network modulo C. This proves that
every Y ⊂ X is Lindelöf Σ and hence X is cosmic by [Ho, Corollary 4.13], which is
a contradiction.

Therefore we can find an uncountable countably compact subspace Y ⊂ X;
it is clear that Y is also a counterexample. Thus we can assume, without loss
of generality, that X is countably compact. It follows from Theorem 2.1(h) that
s(X) � ω and hence X is hereditarily separable (see [Ju, 2.12]).

If Y is a subspace of X then let I(Y ) be the set of isolated points of Y ; if Y �= ∅
then I(Y ) �= ∅ because the space X is scattered. Let X0 = X; if α is a countable
ordinal and we have Xα then Xα+1 = Xα\I(Xα). If α is a limit ordinal and we
have Xβ for every β < α then Xα =

⋂
β<α Xβ . This gives us a strictly decreasing

ω1-sequence {Xα : α < ω1} of closed subsets of X such that X\Xα is countable
and hence Xα �= ∅ for any α < ω1.
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The set Y =
⋃

α<ω1
(X\Xα) is a counterexample because it has cardinality

ω1. The space Y is an increasing union of countable open subsets of X. Therefore
every point of Y has a countable countably compact neighbourhood, i.e., Y is
locally compact and locally countable. The one-point compactification of Y is an
uncountable compact scattered hereditarily separable space. Such spaces do not
exist under MA+¬CH (see [Ro, Theorem 6.4.1]) so if CH does not hold then our
proof is over.

Finally, assume that CH holds and observe that Y is first countable so every
countably compact subspace of Y is closed in Y . Therefore every countably compact
subset of Y is uniquely determined by its countable dense subset and hence the
family P of uncountable countably compact subspace of Y has cardinality at most
ωω

1 = c = ω1.
It is standard that we can find disjoint subsets A, B of the space Y such that

Y = A ∪ B and A ∩ P �= ∅ �= B ∩ P for any P ∈ P. In particular, every countably
compact subset of A as well as every countably compact subspace of B is countable
and hence compact. This, together with Proposition 2.6 implies that both A and
B are hereditarily Lindelöf Σ so we can apply [Ho, Corollary 4.13] again to see that
nw(A) = nw(B) = ω and hence Y = A ∪ B is cosmic which is a contradiction.

If a space Cp(X) is hereditarily dominated by a second countable space then
no additional axioms are needed to obtain the same conclusion as in Theorem 2.17.

2.18. Proposition. If every subspace of a space Cp(X) is dominated by a second
countable space then Cp(X) is cosmic.

Proof. We have s(Cp(X)) = ω by Theorem 2.1(h); besides, Cp(X) is a Lindelöf
Σ-space by Theorem 2.15. If Cp(X) is not hereditarily Lindelöf then we can find an
uncountable right-separated subspace Y ⊂ Cp(X) (see [Ju, Theorem 2.9(b)]). Every
right-separated space of countable spread must be hereditarily separable (see [Ju,
Theorem 2.12]) so Y is separable. In the space Cp(X) the closure of every countable
subset is cosmic by [Ar3, Theorem 7.21] so we can conclude that nw(Y ) � ω and,
in particular, hl(Y ) � ω which is a contradiction. This proves that Cp(X) is
hereditarily Lindelöf so it follows from Lemma 2.16 that Cp(X) is cosmic.

3. Strong domination by second countable spaces.

Say that a space X is strongly dominated by a space M if there exists a cover
F = {FK : K ∈ K(M)} of the space X such that FK is compact for any K ∈ K(M)
and the family F swallows all compact subsets of X in the sense that for any
compact C ⊂ X there is K ∈ K(M) such that C ⊂ FK .

The following two results seem to be a good motivation for a systematic study
of the class M∗ of spaces which are strongly dominated by second countable ones.

3.1. Theorem (Christensen, [Chr, Theorem 3.3]). A second countable space
is strongly P-dominated if and only if it is completely metrizable.
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3.2. Theorem (Cascales and Orihuela, [CO1, Theorem 1]). If X is a com-
pact space such that (X × X)\Δ is strongly P-dominated then X is metrizable.
Here Δ = {(x, x) : x ∈ X} is the diagonal of the space X.

3.3. Proposition. (a) If X is strongly dominated by a second countable space
and Y is a compact-covering image of X then Y is strongly dominated by a second
countable space;
(b) every ℵ0-space is strongly dominated by a second countable space;
(c) if X is strongly dominated by a second countable space then every closed sub-
space of X is also strongly dominated by a second countable space;
(d) if Xi is strongly dominated by a second countable space for every i ∈ ω then∏

i∈ω Xi is strongly dominated by a second countable space;
(e) if X is a space and Yi ⊂ X is strongly dominated by a second countable space
for each i ∈ ω then Y =

⋂
i∈ω Yi is also strongly dominated by a second countable

space.
Proof. Suppose that X is strongly dominated by a second countable space M
and f : X → Y is a compact-covering map. Let {FK : K ∈ K(M)} be the
family which witnesses that X is strongly dominated by M and consider the family
F = {f(FK) : K ∈ K(M)}. It is clear that F consists of compact subsets of Y and
K ⊂ L implies f(FK) ⊂ f(FL). If P is a compact subset of Y then there exists
a compact subset Q ⊂ X such that f(Q) = P . Pick a set K ∈ K(M) such that
Q ⊂ FK and observe that P = f(Q) ⊂ f(FK). Therefore the family F witnesses
that Y is strongly dominated by M , i.e., we proved (a).

The item (b) follows from (a) and the fact that every ℵ0-space is a compact-
covering image of a second countable space [Mi, Theorem 11.4]. The proof of (c) is
straightforward and can be left to the reader.

Next assume that Xi is strongly dominated by a second countable space Mi

and fix a respective family Fi = {Fi(K) : K ∈ K(Mi)} for any i ∈ ω. The space
M =

∏
i∈ω Mi is second countable; let πi : M → Mi be the natural projection for

each i ∈ ω. If K ∈ K(M) then FK =
∏

i∈ω Fi(πi(K)) is easily seen to be a compact
subset of X =

∏
i∈ω Xi. Let pi : X → Xi be the natural projection for every i ∈ ω.

The family F = {FK : K ∈ K(M)} witnesses that X is strongly dominated by
M . Indeed, if Q is a compact subset of X then we can choose Ki ∈ K(Mi) such
that pi(Q) ⊂ Fi(Ki) for each i ∈ ω; for the set K =

∏
i∈ω Ki we have Q ⊂ FK . It

is immediate that K ⊂ L implies FK ⊂ FL so we settled (d). As to (e), observe
that Y is homeomorphic to a closed subspace of

∏
i∈ω Yi so we can apply (c) and

(d) to finish the proof.

3.4. Proposition. The space ω1 with its interval topology is strongly dominated
by the space of rational numbers.

Proof. Given a compact set K ⊂ Q, let αK ∈ ω1 be the minimal ordinal such that
FK = {β : β < αK}, as a subspace of ω1, is homeomorphic to K. Such an ordinal

11



αK exists by [MS, Theorem 1]. It is clear that the family F = {FK : K ∈ K(Q)} is
Q-ordered.

Suppose that L is a compact subset of ω1 and choose an ordinal α < ω1 such
that L ⊂ {β : β < α}. It is easy to see that there exists a countable ordinal γ > α
such that Q = {β : β < γ} is a compact subset of ω1 and no initial segment of
Q is homeomorphic to Q. The space Q is also universal for all countable compact
spaces so there exists K ⊂ Q with K � Q. It is clear that αK = γ and hence
L ⊂ {β : β < α} ⊂ Q = FK . This shows that F is a Q-ordered compact cover of
ω1 which swallows all compact subsets of ω1, i.e., ω1 is strongly Q-dominated.

3.5. Corollary. Under MA+¬CH there exists a strongly Q-dominated space which
is not P-dominated.

Proof. The space ω1 is not P-dominated under MA+¬CH (see [Tk, Theorem 3.6])
so apply Proposition 3.4 to see that ω1 is as promised.

Proposition 3.3(b) and Proposition 3.4 show that M∗ is strictly larger than
the class of ℵ0-spaces. Therefore it is natural to ask when domination by a sec-
ond countable space must imply the ℵ0-property. Recall that a space is called
submetrizable if it has a weaker metrizable topology.

3.6. Theorem. The following conditions are equivalent for any space X:
(a) X is an ℵ0-space;
(b) X is strongly dominated by a second countable space and iw(X) � ω;
(c) X is submetrizable and strongly dominated by a second countable space.

Proof. Every ℵ0-space X is cosmic and hence iw(X) � ω; this, together with
Proposition 3.3(b), shows that (a)=⇒(b). The implication (b)=⇒(c) being trivial
assume that X is submetrizable and strongly dominated by a second countable
space. It follows from [CO2, Theorem 4] that X is a Lindelöf Σ-space so its weaker
metrizable topology must be second countable, i.e., iw(X) � ω.

Fix an M -ordered family {FK : K ∈ K(M)} of compact subsets of X such that
every L ∈ K(X) is contained in some FK . Apply Proposition 2.6 to find a family C
of countably compact (and hence compact) subsets of X such that some countable
family N is a network modulo C and, for every K ∈ K(M) there exists CK ∈ C
such that FK ⊂ CK . In particular, the family C swallows all compact subsets of X.

Taking the closures of the elements of N we will still have a network modulo
C so we can assume, without loss of generality, that N consists of closed subsets
of X. Fix a second countable topology μ on the set X such that μ ⊂ τ(X). The
space (X, μ) has a countable closed network P modulo all compact subsets of (X, μ).
Observe that the identity map id : X → (X, μ) is continuous and hence any compact
subset of X is also compact in (X, μ). Consider the family Q of all finite unions
and finite intersections of the elements of the family P ∪ N ; we claim that Q is a
network for all compact subsets of X.
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Indeed, take any L ∈ K(X) and U ∈ τ(L, X). There exists C ∈ C such that
L ⊂ C. The set C\U does not meet L so there exists P ∈ P such that L ⊂ P and
P ∩ (C\U) = ∅. The set P ′ = P\U does not meet C so we can find a set N ∈ N
such that C ⊂ N ⊂ X\P ′. The set Q = N ∩ P belongs to Q and L ⊂ Q ⊂ U so
the family Q witnesses that X is an ℵ0-space.

3.7. Remark. Adapting to our situation the proof of the implication (ii)=⇒(i) in
Theorem 6 of [CO2] gives another direct (and somewhat shorter) way to establish
the implication (c)=⇒(a) in Theorem 3.6.

3.8. Corollary. Under Martin’s Axiom, every subspace of a space X is strongly
dominated by a second countable space if and only if X is an ℵ0-space.

Proof. If X is an ℵ0-space then every subspace of X is also ℵ0-space so X is
hereditarily strongly dominated by a second countable space by Proposition 3.3(b);
this proves sufficiency.

If X is hereditarily strongly dominated by a second countable space then we can
apply Theorem 2.17 to convince ourselves that X is cosmic and hence iw(X) � ω.
Now it follows from Theorem 3.6 that X is an ℵ0-space.

Given an infinite cardinal κ say that a space X is κ-hemicompact if there exists
a family F of compact subsets of X such that |F| � κ and F swallows all compact
subsets of X, i.e., for any K ∈ K(X) there exists F ∈ F such that K ⊂ F . Observe
that a space is hemicompact if and only if it is ω-hemicompact.

3.9. Theorem. The σ-product Sκ = {x ∈ Dκ : |x−1(1)| < ω} of the space Dκ is
not κ-hemicompact for any infinite cardinal κ.

Proof. Denote by u the point of Dκ which is identically zero on κ and hence
u−1(1) = ∅. Take any family F = {Fα : α < κ} of compact subsets of Sκ. The
set Sκ is not compact so we can pick a point x0 ∈ Sκ\F0. Proceeding inductively
assume that α < κ and we have chosen a set {xβ : β < α} with the following
properties:

(1) xβ ∈ Sκ\Fβ for any β < α;
(2) the family {x−1

β (1) : β < α} is disjoint.

Observe that the set A =
⋃{x−1

β (1) : β < α} has cardinality strictly less than
κ. Therefore the subspace Y = {x ∈ Sκ : x(A) = 0} is not compact so we can
choose a point xα ∈ Y \Fα; it is immediate that the conditions (1) and (2) are still
satisfied for the set {xβ : β � α}. Thus we can construct a set {xα : α < κ} for
which the properties (1) and (2) hold for any α < κ.

It follows from (2) that the set K = {xβ : β < κ}∪{u} is compact; the property
(1) shows that xβ ∈ K\Fβ for any β < κ and therefore no element of the family F
swallows the set K.
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3.10. Theorem. Under the Continuum Hypothesis (CH) if a space X is compact
and Cp(X) is strongly dominated by a second countable space then X is countable
and hence Cp(X) is second countable.

Proof. Apply Theorem 2.15 to see that Cp(X) is a Lindelöf Σ-space and hence X
is Gul’ko compact. If the space X is not scattered then we can find a countable
dense-in-itself set A ⊂ X. The space K = A is compact, second countable and
metrizable [Ar3, Theorem 7.21] so Cp(K) embeds in Cp(X) as a closed subspace
[Ar3, Theorem 4.1]. This implies, by Proposition 3.3(c), that Cp(K) is strongly
dominated by a second countable space. Since iw(Cp(K)) � nw(Cp(K)) = ω,
we can apply Theorem 3.6 to convince ourselves that Cp(K) is an ℵ0-space so K
is countable by [Mi, Proposition 10.7]. However, K has no isolated points; this
contradiction shows that X has to be scattered.

The set D of isolated points of the space X is dense in X; if D is countable
then X is second countable so we can apply Theorem 3.6 again to see that Cp(X)
is an ℵ0-space and hence X is countable by [Mi, Proposition 10.7]. Therefore we
can assume that κ = |D| � ω1; consider the space Y which is obtained from X
by contracting the set F = X\D to a point. It is evident that Y is a compact
space with a unique non-isolated point, i.e., Y is homeomorphic to the one-point
compactification Aκ of a discrete space of cardinality κ. The space Y is a continuous
closed image of X so Cp(Y ) is homeomorphic to a closed subspace of Cp(X). Thus
Cp(Y ) � Cp(Aκ) is strongly dominated by a second countable space.

It is an easy exercise that the space Cp(Aκ) is homeomorphic to the Σ∗-product
Ω = {x ∈ Rκ : the set {α < κ : |x(α)| � ε} is finite for any ε > 0} of the space Rκ.
Furthermore, Ω ∩ Dκ = Sκ = {x ∈ Dκ : x−1(1) is finite} so Sκ is a closed subset
of Ω; in particular, Sκ is strongly dominated by a second countable space M . Let
F = {FK : K ∈ K(M)} be a family of compact subsets of Sκ which witnesses this.
However, |K(M)| � c = ω1 so |F| � ω1 and hence Sκ is ω1-hemicompact; since
κ � ω1, we have obtained a contradiction with Theorem 3.9.

It is not difficult to deduce the following theorem from a general result proved
by M. Muñoz in her PhD thesis (see [Mu, Theorem 2.10.1]). This result was also
published in [CMO, Proposition 5.1]. For the reader’s convenience we chose to avoid
dealing with uniformities and give a direct topological proof here.

3.11. Theorem. A compact space X is metrizable if and only if X2\Δ is strongly
dominated by a second countable space.

Proof. The necessity being evident fix a second countable space E and a family
F = {F (Q) : Q ∈ K(E)} of compact subsets of X2\Δ which witnesses that X2\Δ is
strongly E-dominated. Denote by C the subspace Cp(X, [0, 1]) of the space Cp(X)
and let I = [0, 1]. For the space M = EN let πn : M → E be the natural projection
onto the n-th factor of M .

For every K ∈ K(M) consider the set Hn = {f ∈ IX : |f(x) − f(y)| � 1
n for

any (x, y) ∈ X2\F (πn(K))} for each n ∈ N and let GK =
⋂{Hn : n ∈ N}. It is
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immediate that K ⊂ L implies GK ⊂ GL for any K, L ∈ K(M). We omit a simple
proof of the fact that the set GK is closed in IX and hence compact. To see that
GK ⊂ C take any f ∈ GK , x ∈ X and ε > 0. If n ∈ N and 1

n < ε then the set
U = {y ∈ X : (x, y) /∈ F (πn(K))} is an open neighbourhood of x in X and we have
the inclusions

f(U) ⊂ [f(x) − 1/n, f(x) + 1/n] ⊂ (f(x) − ε, f(x) + ε)
which show that f is continuous at the point x. Thus GK is a compact subset of C
for any K ∈ K(M).

To see that G = {GK : K ∈ K(M)} is a cover of C take any f ∈ C. Then
On = {(x, y) ∈ X2 : |f(x) − f(y)| < 1/n} is an open neighbourhood of Δ so the
set Pn = X2\On ⊂ X2\Δ is compact for any n ∈ N. The family F swallows
all compact subsets of X2\Δ and hence we can find a set Kn ∈ K(M) such that
Pn ⊂ F (Kn) for all n ∈ N. It is straightforward that f ∈ GK for the compact set
K =

∏{Kn : n ∈ N} of the space M .
This proves that C is dominated by M ; since countably compact subsets of

C are compact, we can apply Proposition 2.6 to see that there exists a countable
network modulo a compact cover of C, i.e., the space C is Lindelöf Σ. The space
X being compact, Cp(X) is also Lindelöf Σ being the countable union of subspaces
homeomorphic to C. It is easy to see that the space X2 embeds in Cp(Cp(X))
whence l(X2\Δ) = ext(X2\Δ) = ω (see Theorem 2.1(h) and [Bat, Theorem 1′]).
Therefore X2\Δ is Lindelöf; this easily implies that Δ is a Gδ-subset of X × X so
X is metrizable by [En, 4.2.B].

3.12. Corollary. Suppose that X is a compact space, M is a second countable
space and we have a family G = {UK : K ∈ K(M)} of neighbourhoods of the
diagonal Δ in the space X×X such that UK ⊂ UL whenever L ⊂ K. If, additionally,⋂{G : G ∈ G = Δ} then X is metrizable.

Proof. Let FK = (X × X)\Int(UK) for any K ∈ K(M). It is immediate that
FK ⊂ FL if K ⊂ L, i.e., the family F = {FK : K ∈ K(M)} is ordered by M . The
equality

⋂{G : G ∈ G} = Δ shows that
⋃{Int(FK) : K ∈ K(M)} = X2\Δ. Given

a compact set F ⊂ X2\Δ, the family {Int(FK) : K ∈ K(M)} is an open cover of F
so we can find K1, . . . , Kn ∈ K(M) such that F ⊂ Int(FK1) ∪ . . . ∪ Int(FKn) ⊂ FK

for K = K1 ∪ . . . ∪ Kn ∈ K(M). Therefore the family F witnesses that X2\Δ is
strongly dominated by the second countable space M and hence X is metrizable by
Theorem 3.11.

3. Open problems.

One of the niceties of the concept of domination by a second countable space
is a possibility to obtain new metrization theorems for compact spaces. We already
saw that if X compact and (X ×X)\Δ is strongly dominated by a second countable
space then X is metrizable. The most interesting question here is whether we can
omit the word “strongly” in the above statement.
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3.1. Problem. Let X be a compact space such that X2\Δ is P-dominated. Is it
true in ZFC that X must be metrizable?

3.2. Problem. Let X be a compact space such that X2\Δ is Q-dominated. Is it
true in ZFC that X must be metrizable?

3.3. Problem. Let X be a compact space such that X2\Δ is M -dominated for
some separable metrizable space M . Is it true in ZFC that X must be metrizable?

3.4. Problem. Suppose that X is a K-analytic space such that X2\Δ is strongly
P-dominated. Must X be cosmic?

3.5. Problem. Let X be a K-analytic space such that X2\Δ is P-dominated.
Must X be cosmic?

3.6. Problem. Suppose that X is a Lindelöf Σ-space such that X2\Δ is strongly
P-dominated. Must X be cosmic?

3.7. Problem. Let X be a Lindelöf Σ-space such that X2\Δ is P-dominated. Must
X be cosmic?

3.8. Problem. Let X be a Lindelöf Σ-space such that X2\Δ is Q-dominated.
Must X be cosmic?

3.9. Problem. Suppose that Cp(X) is strongly Q-dominated. Must the space X
be countable?

3.10. Problem. Suppose that Cp(X) is strongly M -dominated for some separable
metric space M . Must X be countable?

3.11. Problem. Suppose that X is compact and Cp(X) is strongly dominated by
a second countable space. Is it true in ZFC that X must be countable?

3.12. Problem. Suppose that X is a compact space and X2\Δ is P-dominated.
Is it true in ZFC that X must have a small diagonal?

3.13. Problem. Suppose that a separable metrizable space X is Q-dominated.
Must X be analytic?

3.14. Problem. Suppose that every subspace of a space X is dominated by a
second countable space. Is it true in ZFC that X must be cosmic?

3.15. Problem. Suppose that every subspace of a space X is Q-dominated. Is it
true in ZFC that X must be cosmic?

3.16. Problem. Suppose that every subspace of a space X is strongly dominated
by a second countable space. Is it true in ZFC that X must be an ℵ0-space?

3.17. Problem. Suppose that every subspace of a compact space X is dominated
by a second countable space. It is true in ZFC that X must be metrizable?

16



3.18. Problem. Suppose that X is a compact space and every subspace of X is
Q-dominated. It is true in ZFC that X must be metrizable?

3.19. Problem. Suppose that every subspace of a compact space X is strongly
dominated by a second countable space. Is it true in ZFC that X must be metriz-
able?

3.20. Problem. Suppose that X is a compact space and every subspace of X is
strongly Q-dominated. It is true in ZFC that X must be metrizable?
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