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@ Three results related to RNP

o Related with separable dual spaces: RNP and the Lindelof property.
o Related to small slices: RNP and norm attaning operators.
o Related to the definition RNP: indexes.
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© Further comments: filters, ultrafilters, applications.
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Measurability: f:(Q,X,u) — E

Simple function.- s =Y, ajxa,, where o; € E, A; € X, disjoints.
Measurable function.- lim, || sp(w) —f(w) [|=0, uae we.
Scalarly measurable function.- x*f is measurable for x* € E*.

Pettis's Theorem
For a function f: Q — E, TFAE:
@ f is measurable.

@ (a) Thereis A€ X with u(A)=0 such that f(Q2\ A) is separable.
(b) For each x* € X*, the function x*f is measurable.

| A

v

Measurable#scalarly measurable

f:[0,1] = £3([0,1]) t — e
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Bochner integral

The integral of simple functions.- If s =Y, ajxa,, with A; € ¥ and o; € E, is
a simple function, we define

n
[ sdu=Y. an(ana).
A i=1

Bochner integral.- A p-measurable f : 2 — E is Bochner integrable, if there
is a sequence of simple functions (s,), such that

I|,r1n/Q||s,,—f\| dy = 0.

The vector / fdu= Iim/ spdu is called Bochner integral of f.
A nJA
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A first property of Bochner integral

If f:Q — E is measurable. TFAE:
@ f is Bochner integrable.

@ || f || Lebesgue integrable.
If f:Q — E Bochner integrable, then, for each A € ¥, we have

H/fduH < [ £ du
A A
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You can carry on reading Diestel-Uhl, 1977

VECTOR MEASURES

By J. DIESTEL and J. J. UHL, Jr.
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THEOREM 3 (DOMINATED CONVERGENCE THEOREM). Let (2, 2, p) be a finite meas-
ure space and (f,) be a sequence of Bochner integrable X-valued functions on Q.
If lim, f,, = fin y-measure, (i.e., lim, y{lw€Q: || f, — fI Z €} = 0 for every ¢ > 0)
and if there exists a real-valued Lebesgue integrable function g on Q with || f,|| < g
w-almost everywhere, then f is Bochner integrable and lim, (¢ f,, dp. = (g fdu for each
Ee 3. In fact, lim, o || f — f,| du = 0.
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THEOREM 4. If f'is a u-Bochner integrable function, then

(1) limyg—o fef du = 0;

(i) [fz/ dul < §e 1 £ 1l dp, for all Ec 3;

(iii) if (E,) is a sequence of pairwise disjoint members of 2 and E = | )., E,,, then

J-Efd# = i:]l Lnfdu,

where the sum on the right is absolutely convergent;
(iv) if F(E) = [ fdy, then F is of bounded variation and

|FI(E) = [e I fl du for all E€ 2.
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Then, at Berkeley, California, Rieffel taught a
real analysis course in which he opted to present the Bochner integral instead of
the classical Lebesgue theory. As rumor has it, all went smoothly until he came to
the Radon-Nikodym theorem and its attendant difficulties in infinite dimensional
Banach spaces.
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EXAMPLE 1. The failure of the Radon-Nikodym theorem for a cy-valued measure.
Let 2 = [0, 1]and x be Lebesgue measure on 2, the o-field of Lebesgue measurable
subsets of [0, 1]. Define a measure G: 3 — ¢ by

G(E) = ( j i) dy(t)).
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Definition (Rieffel, 1967)

D C E is dentable if for each € > 0 there is a point x € D such
that x € co(D\ Ug(x))
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U i()(\

)
*x
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Proposition (Small slices)

D C E is dentable if, and only if, D has slices of arbitrarily small
diameter.

S={y €D :x"(y)> supyx" - a} a>0
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THEOREM 7 (RIEFFEL-MAYNARD-HUFF-DAVIS-PHELPS). Any one of the following
statements about a Banach space X implies all the others.

(a) Every bounded subset of X is dentable.

(b) Every bounded subset of X is g-dentable.

(c) The space X has the Radon-Nikodym property.

-
\.

Fragment from Phelps’ memorial article

“As | recall, there was a period of excitement involving Rieffel’s generalization
of the classical Radon-Nikodym Theorem to Banach space valued functions
provided the Banach space has the Radon-Nikodym Property (RNP) which is a
geometric property. The RNP immediately attracted widespread attention, and
Bob was not immune from the RNP-bug. He published in 1974-75 three
papersl’) (one jointly with Davis) on RNP. By 1975 it was shown that the RNP,
which was shown to be necessary by Rieffel for his generalized Radon-Nikodym
theorem, is also sufficient by the combined efforts of Chatterji, Davis, Huff,
Maynard and Phelps.”

I. Namiola (August 2013).
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Fragment from Phelps’ memorial article

“While visiting Seattle, Edgar Asplund from Sweden wrote a very interesting
paper Fréchet differentiability of convex functionsl8l, where he introduced a
new class of Banach spaces called strong differentiability space(or SDS).
Around 1974, Bob got interested in SDS space again. First he proposed to
rename SDS spaces Asplund spaces in honor of Edgar Asplund, who had died
shortly before.”

“In 1983, Bob's former Ph.D. student, Richard Bourgin, published an excellent
exposition of the matters related to the RNPI and parts of the Rainwater
seminar notes were incorporated into the book.”

I. Namiola (August 2013).
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Bourgin's book

Richard . Bourgin

Geometric Aspects of
Convex Sets with the
Radon-Nikodym Property

Lecture Mates in Hathemadics

@ Springer
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A very remarkable result

Namioka, Phelps and Stegall

Let E be a Banach space. Then the following
conditions are equivalent:

U (i) E is an Asplund space, i.e., whenever f is a
convex continuous function defined on an
open convex subset U of E, the set of all
points of U where f is Fréchet differentiable
is a dense Gg-subset of U.

(ii) every w*-compact subset of (E*,w*) is
fragmented by the norm;

(iii) each separable subspace of E has separable

|I]| —diam(UNS) < e dual;
(iv) E* has the Radon-Nikodym property.
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Theorem (Namioka-Orihuela-Cascales, 2003)

K compact subset of MP, (M, p) metric space.
T.F.A.E:

(a) The space (K,1p) is fragmented by d.

(b) For each A€ €, the pseudo-metric space
(K,da) is separable.

(c) (K,y(D)) is Lindeldf.
(d) (K,y(D))N is Lindeléf.
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Theorem (Solution to a problem by Corson)

If (E*,w) is Lindeléf, then (E*,w)? is Lindeléf
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Theorem (Guirao-Kadets-Cascales, 2013)

Let 2 C C(K) be a uniform algebra and T: X — 2 be an Asplund
operator with || T|| = 1. Suppose that 0 < & < /2 and xg € Sx are
such that || Txo|| > 1— % Then there exist up € Sx and an
Asplund operator Te Si(x ) satisfying that

| Tuoll=1,||x0—wl <& and ||T—T| < 2e.

This gives
e for C(K) an example of the BPBp for ¢y as domain and an

infinite dimensional Banach space as range (answer a question
by Acosta-Aron-Garcia-Maestre, 2008);

@ new cases, in particular, disk algebra as range.
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Co-authors

W?

@ R. M. Aron, B. Cascales and O. Kozhushkina,
The Bishop-Phelps-Bollobas theorem and Asplund operators,
Proc. Amer. Math. Soc. 139 (2011), no. 10, 3553-3560.

@ B. Cascales, A. J. Guirao and V. Kadets,
A Bishop-Phelps-Bollobas type theorem for uniform algebras,
Advances in Mathematics 240 (2013) 370-382
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A Urysohn type lemma for uniform algebras

Proposition 2.8. Let A C C(K) be a unital uniform algebra, 2 C C a bounded simply
connected region such that all points in its boundary 32 are simple. Let us fix two different
points a and b with b € 312, a € 12 and a neighborhood V, C 2 of a. Then, for every open set
U C K with U N Iy # ¥ and for every to € U N I, there exists f € A such that

() f(K) C 2
(i) f(t0) = by
(iii) f(K\U) C V,.
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A bit of notation

@ m:Y — E vector measure c. a. and p-continuous;

@ For every B € £ the average range of m|g is denoted by

rB::{Z((g)):Cezg}.

e DCE,

rad(D) =inf{6 > 0: 3x € E such that D C B(x,9d)}.
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Index of representability vs. dentability

Definition
Given a p-continuous vector measure of bounded variation
m: X — E, the index of representability %(m) of m is defined as

Z(m):=inf{e>0:VAe LT IB € X} with rad(lg) < €}

Characterization

Z(m) is characterized as the infimum of the constants § for which
there exists g € L'(u, E) satisfying

Hm(A) —/ gdu” <O u(A), forevery A€ X,
A
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With the help of the lifting theorem, it is possible to prove that if
(@, 3, p) is a finite measure space and T: Ly(x) — X* is a bounded linear operator,
then there exists a function g: Q — X* that is weak*-measurable and such that for
each x € X and fe Ly(x), one has (Tf)(x) = [, f(w)g(w)(x) du(w). On the surface,
this is a vast generalization of Theorem 3.1 which it includes. Unfortunately, this
generalization is mostly an esthetic generalization because the measurability prop-
erties of the kernel g are not, in general, strong enough to exhibit structural prop-
erties of the operator under representation.
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Fix p : ¥ — X a lifting, and write:

o 7 = p(¥)\{0}.
@ (U,>) is the directed set of all finite partitions of Q into
elements of .% ordered by refinement .

Lemma (Folklore + a little thing)

The net

m(A)

Aer

converges pointwise [l-almost everywhere in the ®*-topology to a
function v : Q — E* which is w*-measurable and that satisfies the
following properties for every A € ¥:

(1) {x;m(A)) = [a (x, (1)) dpt
(1) w(t) e ﬁw* for p-almost every t € A.
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Theorem

Let m: ¥ — E — E** be a u-continuous measure of bounded
variation and v : Q — E** a Gelfand derivative of m. Then

Z#(m) < meas(y) < 2%2(m)
and there exists a u-null set D such that

A

d(y(2\ D), E) < Z(m).

For subsets of E define:
@ Dent(C) =inf{e > 0:3S slice of C with rad(S) < &}
e dent(D) =sup{Dent(C): C C D}

Let m: ¥ — E be a u-continuous vector measure of bounded
variation. Then
Z(m) < dent(AR(m)).
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Let (,%,u) be a finite measure space and T : L(u) — E a
continuous linear operator. Then

d( T:-iﬂrep(Ll(u): E)) <2 7( T(BLl(u)))'

@ B. Cascales, A. Pérez and M. Raja,
Radon-Nikodym indexes and measures of non weak compactness.
Preprint, 2013
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One last thing

Good readings for liftings are:

@ D. H. Fremlin, Measure theory. Vol. 3, Torres Fremlin, Colchester, 2004,
Measure algebras, Corrected second printing of the 2002 original.

@ A. lonescu Tulcea and C. lonescu Tulcea, Topics in the theory of lifting,
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48,
Springer-Verlag New York Inc., New York, 1969.

THANKS




	MainPart
	RNP, dentability and fragmentability
	Measurability
	Bochner integral
	RNP, dentability and fragmentability

	Three results
	RNP and the Lindelöf property
	RNP and norm attaning operators
	RNP and the Lindelöf property
	Fragmentability and representable operators

	One lastg thing
	One lastg thing



