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Abstract

We prove two Radon-Nikodým theorems for multimeasures using set-
valued Pettis integrable derivatives. The first one works for dominated
strong multimeasures taking convex compact values in a locally convex
space. The second one works for strong multimeasures taking bounded
convex closed values in a Banach space with the RNP (and for Bochner
integral of the Radon-Nikodým derivative as well). The main advantage of
our results is the absence of any separability assumptions.
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1 Introduction

The first Radon-Nikodým theorems for multimeasures go back to the 1970’s where
pioneering results were established amongst others by Debreu and Schmeidler [9],
Artstein [1], and Costé and Pallu de la Barrière [8]; whereas the first two papers
deal with multimeasures with values in finite dimensional spaces the last one
deals with multimeasures with values in Souslin infinite dimensional spaces. As
presented in the introduction of [1] these original results in finite dimensional
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spaces were motivated for their applications to mathematical economics, control
theory and other mathematical fields: Chapter 20 in [19] is a good reading for
the origins and applicability of these results.

We are here interested about the mathematical ideas behind Radon-Nidodým
theorem for multimeasures and our starting point is the remarkable result that
follows:

Theorem 1.1 (Costé and Pallu de la Barrière [8], Thm. 3.1) Let (E, Y )
be a dual pair such that (E, σ(E, Y )) is a Souslin space, M be a weak multimeasure
defined on a complete finite measure space (Ω,Σ, µ). Let M take σ(E, Y )-locally
compact closed convex values, and let there be a σ(E,F )-locally compact set Q
such that M(A) ⊂ µ(A)Q for all A ∈ Σ. Then there is a weakly integrable
multifunction F whose indefinite weak integral is M .

Note that the theorem above is applicable for instance when X is a separable
Banach space and Q ⊂ X is a weakly compact set, because in this case the weak
topology σ(X,X∗) is Souslin. The aim of this article is to show that in reality
in the case of Q being compact any topological restriction about Q or about the
pair (E, Y ) is unnecessary. Our proof is completely different from that of [8,
Theorem 3.1] and yields a widely applicable technique that allows us to obtain
Radon-Nikodým type results, amongst other, for multimeasures in Banach and
dual Banach spaces without separability assumptions.

Note, that there is a number of papers (see e.g. [7], [16], [15] and the references
therein) devoted to the Radon-Nikodým theorem for multimeasures searching for
a Radon-Nikodým derivative in separable Banach spaces, where the integral of
corresponding multifunction is defined as (the closure of) the set of all Bochner
integrable selectors. Our method of constructing Radon-Nikodým derivatives
enables us to get rid of separability restriction in that type of results as well.

2 Definitions and terminology

Throughout this paper (Ω,Σ, µ) is a complete finite measure space. The indicator
function of A ∈ Σ is denoted by 1A. By X we denote a (real) locally convex space.
X∗ stands for the topological dual space of X. By 2X we denote the family of all
non-empty subsets of X. We consider the following subfamilies of 2X :

bcc(X) := {A ∈ 2X : A is bounded, convex and closed};
ck(X) := {A ∈ 2X : A is convex and compact};

cwk(X) := {A ∈ 2X : A is convex and weakly compact}.

For any set C ⊂ X and any x∗ ∈ X∗, we write

δ∗(x∗, C) := sup{x∗(x) : x ∈ C} and C|x∗ := {x ∈ C : x∗(x) = δ∗(x∗, C)}.
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Definition 2.1 A multifunction F : Ω→ bcc(X) is called Pettis integrable if

(i) δ∗(x∗, F ) is integrable for every x∗ ∈ X∗;

(ii) for each A ∈ Σ, there is
∫
A F dµ ∈ bcc(X) such that

δ∗
(
x∗,

∫
A
F dµ

)
=

∫
A
δ∗(x∗, F ) dµ for every x∗ ∈ X∗.

Here the function δ∗(x∗, F ) : Ω→ R is defined by δ∗(x∗, F )(t) := δ∗(x∗, F (t)).

The Pettis integral for multifunctions was first considered by Castaing and Val-
adier [6, Chapter V,§4] and has been widely studied in recent years, see e.g.
[3, 4, 12, 23].

Given a sequence (An) of subsets of X, we write
∑

nAn to denote the set of all
elements of X which can be written as the sum of an unconditionally convergent
series

∑
n xn, where xn ∈ An for every n ∈ N.

Definition 2.2 A multifunction M : Σ→ 2X is called a strong multimeasure if:

(i) M(∅) = {0};

(ii) for each disjoint sequence (En) in Σ, we have M(
⋃
nEn) =

∑
nM(En).

We say that the strong multimeasure M : Σ → 2X is µ-continuous (shortly
M � µ) if M(A) = {0} whenever A ∈ Σ satisfies µ(A) = 0. A selector m of M
is a vector-valued function m : Σ→ X such that m(A) ∈M(A) for every A ∈ Σ.

For the concept of multimeasure and historical references we refer to [15,
Chapter 7] and the references therein. For the terminology of vector measure
and integration theory, in particular for definition and properties of Bochner
integral and Banach spaces with the Radon-Nikodým Property (RNP) we refer
to [11].

3 Radon-Nikodým theorem for dominated multimea-
sures

This section is devoted to prove the following Radon-Nikodým theorem for strong
multimeasures. To be able to provide a proof for this result we will have to
establish first a few preliminary results.

Theorem 3.1 Let M : Σ → ck(X) be a strong multimeasure for which there is
a set Q ∈ ck(X) such that M(A) ⊂ µ(A)Q for all A ∈ Σ. Then there is a Pettis
integrable multifunction F : Ω→ ck(X) such that:
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(i) For every countably additive selector m of M there is a Pettis integrable
selector f of F such that m(A) =

∫
A f dµ for all A ∈ Σ.

(ii) For every A ∈ Σ the following equalities hold:

M(A) =

∫
A
F dµ =

{∫
A
f dµ : f is a Pettis integrable selector of F

}
.

Any strong multimeasure as in Theorem 3.1 has bounded variation, in the
sense of the following definition. Given a continuous seminorm p on X and
A ⊂ X, we write

‖A‖p := sup{p(x) : x ∈ A}.

Definition 3.2 Let M : Σ→ 2X be a strong multimeasure. For each continuous
seminorm p on X and each E ∈ Σ, we define

|M |p(E) := sup
∑
i

‖M(Ei)‖p

where the supremum is taken over all finite partitions (Ei) of E in Σ.
We say that M has bounded variation if |M |p(Ω) < ∞ for every continuous

seminorm p on X.

We start by recalling the following result that is part of the folklore.

Proposition 3.3 Let M : Σ → 2X be a strong multimeasure of bounded varia-
tion. Then:

(i) for every continuous seminorm p on X, |M |p is a countably additive finite
measure.

(ii) every finitely additive selector m : Σ→ X of M is countably additive.

Proof. Statement (i) can be proved in the same way that the case of signed (single-
valued) measures; its validity for Banach space-valued strong multimeasures was
already pointed out in [16, Proposition 1.1].

To prove statement (ii), take a disjoint sequence (En) in Σ and fix a continuous
seminorm p on X. Then

p

(
m

(⋃
n

En

)
−

k∑
n=1

m(En)

)
= p

(
m

(⋃
n>k

En

))
≤

≤

∥∥∥∥∥M
(⋃
n>k

En

)∥∥∥∥∥
p

≤ |M |p

(⋃
n>k

En

)
→ 0 as k →∞,
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because |M |p is a countably additive finite measure (by (i)). Since p is arbitrary,
the series

∑
nm(En) converges to m(

⋃
nEn) in X. 2

The following result on countably additive selectors of multimeasures can
be extracted from [24, Theorem 3]; cf. [16, Proposition 2.1] for an analogous
result dealing with exposed points and Banach spaces: the proof is included
here because it might be difficult for some readers to get a copy of the original
paper [24].

Lemma 3.4 (Pallu de la Barrière) Let M : Σ → 2X be a convex valued
strong multimeasure of bounded variation.

(i) If x ∈ ext(M(Ω)), then there is a countably additive selector m of M such
that m(Ω) = x.

(ii) If M takes values in ck(X), then for every x ∈ M(Ω) there is a countably
additive selector m of M such that m(Ω) = x.

Proof. (i) Observe first that if C1, C2 ⊂ X are convex and x ∈ ext(C1 +C2), then
there exist unique xi ∈ Ci such that x = x1 + x2; moreover, xi ∈ ext(Ci).

For each A ∈ Σ, we have x ∈ ext(M(Ω)) = ext
(
M(A) + M(Ω \ A)

)
and

so there exist unique m(A) ∈ M(A) and m(Ω \ A) ∈ M(Ω \ A) such that x =
m(A) +m(Ω \A).

We claim that m : Σ→ X is finitely additive. Indeed, take disjoint A1, A2 ∈ Σ
and set A := A1 ∪ A2. Since m(A) ∈ M(A) = M(A1) + M(A2), we can write
m(A) = x1 + x2 for some xi ∈M(Ai). Since

x = m(A) +m(Ω \A) = x1 +
(
x2 +m(Ω \A)

)
and x2 + m(Ω \ A) ∈ M(A2) + M(Ω \ A) = M(Ω \ A1), we obtain x1 = m(A1).
In a similar manner, x2 = m(A2). Hence m(A) = m(A1) + m(A2). Now we use
(ii) in Proposition 3.3 to conclude that m is countably additive.

(ii) Let S be the set of all finitely additive selectors of M and consider

R :=
{(
m(A)

)
A∈Σ

: m ∈ S
}
⊂
∏
A∈Σ

M(A) ⊂ XΣ

equipped with the product topology T. Since R is T-closed and
∏
A∈ΣM(A) is

T-compact, R is T-compact as well. Since the mapping

ϕ : R→ X, ϕ(m) := m(Ω),

is T-continuous, the set ϕ(R) ⊂ M(Ω) is compact. By (i) and the convexity
of ϕ(R) we have

co
(
ext(M(Ω))

)
⊂ ϕ(R)

5



and an appeal to the Krein-Milman theorem [20, §25.1.(4)] ensures us that ϕ(R) =
M(Ω).

Hence for every x ∈ M(Ω) there is a finitely additive selector m of M such
that m(Ω) = x. Again, statement (ii) in Proposition 3.3 can be used to conclude
that m is countably additive. 2

Given a set B ⊂ X, we denote by att(B) the set of those x∗ ∈ X∗ that attain
their supremum on B (i.e. B|x∗ 6= ∅). The result isolated in Lemma 3.5 below was
proved in [8, Proposition 5.1] under the assumption that X is finite-dimensional,
but in fact that assumption was not used in the proof.

Lemma 3.5 (Coste and Pallu de la Barrière) Let M : Σ→ 2X be a strong
multimeasure. If x∗ ∈ att(M(Ω)) then:

(i) x∗ ∈ att(M(A)) for all A ∈ Σ;

(ii) the mapping M |x∗ : Σ→ 2X , M |x∗(A) := (M(A))|x∗, is a strong multimea-
sure.

Proof. (i) Fix A ∈ Σ. Pick x ∈ M |x∗(Ω) ⊂ M(Ω) = M(A) + M(Ω \ A) and
write x = y + z for some y ∈ M(A) and z ∈ M(Ω \ A). Suppose if possible
that y 6∈ (M(A))|x∗ . Then x∗(v) > x∗(y) for some v ∈ M(A) and so the vector
v+ z ∈M(A) +M(Ω \A) = M(Ω) satisfies x∗(v+ z) > x∗(y+ z) = x∗(x), which
contradicts the choice of x. Thus y ∈ (M(A))|x∗ and so x∗ ∈ att(M(A)).

(ii) Clearly M |x∗(∅) = {0}. Now let (An) be a disjoint sequence in Σ and set
A :=

⋃
nAn. To prove M |x∗(A) ⊂

∑
nM |x

∗
(An), pick x ∈ M |x∗(A) ⊂ M(A) =∑

nM(An) and write x =
∑

n xn, where xn ∈M(An). By the argument used in
the proof of (i), we have xn ∈M |x

∗
(An) for every n ∈ N, hence x ∈

∑
nM |x

∗
(An).

To prove
∑

nM |x
∗
(An) ⊂ M |x∗(A), take any x ∈

∑
nM |x

∗
(An) and write

x =
∑

n xn, where xn ∈M |x
∗
(An). Each y ∈M(A) can be written as y =

∑
n yn

for some yn ∈M(An), so that

x∗(y) =
∑
n

x∗(yn) ≤
∑
n

x∗(xn) = x∗(x).

It follows that x ∈M |x∗(A) and the proof is over. 2

Let ρ : Σ→ Σ be a lifting on (Ω,Σ, µ) (see e.g. [17, p. 46, Theorem 3] or [14,
341K]). Note that ρ satisfies the following properties:

1. If A,B ∈ Σ and µ(A∆B) = 0 then ρ(A) = ρ(B).

2. µ(ρ(A)∆A) = 0 for every A ∈ Σ.

3. ρ(A ∩B) = ρ(A) ∩ ρ(B) for every A,B ∈ Σ.
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4. ρ(∅) = ∅, ρ(Ω) = Ω.

5. ρ(Ω\A) = Ω\ρ(A) for every A ∈ Σ.

6. ρ(A ∪B) = ρ(A) ∪ ρ(B) for every A,B ∈ Σ.

Then ρ(Σ) is a subalgebra of Σ such that µ(A) > 0 whenever A ∈ ρ(Σ) \ {∅}.
We consider the collection 0 of all finite partitions of Ω into elements of

ρ(Σ) \ {∅}, equipped with the natural ordering (defined by saying that Γ1 � Γ2

if and only if Γ1 is finer than Γ2). Then (0,�) is a directed set.

The notion of Pettis integrable vector-valued function f : Ω → X as can be
found in the literature (see e.g. [11, II.3] for the Banach space case) corresponds
to Definition 2.1 for F (t) := {f(t)} when the integral

∫
A F dµ is a singleton.

Recall that a function f : Ω → X is strongly measurable if it is the µ-a.e.
limit of a sequence of simple functions. A celebrated Pettis’ result establishes
that, when X is a Banach space, a function f : Ω→ X is strongly measurable if,
and only if, f is weakly measurable (i.e. x∗ ◦ f is measurable for every x∗ ∈ X)
and f(Ω \ A) is separable for some A ∈ Σ with µ(A) = 0, see [11, Theorem 2,
p. 42].

Definition 3.6 For every Pettis integrable function f : Ω→ X and every Γ ∈ 0,
we define fΓ : Ω→ X by

fΓ :=
∑
A∈Γ

( 1

µ(A)

∫
A
f dµ

)
1A.

The following lemma can be deduced from a result by Kupka, see [21, Lemma 4.3].
For the readers convenience we prefer to give a direct proof.

Lemma 3.7 Suppose X is a Banach space and f : Ω→ X is strongly measurable
and Pettis integrable. Then limΓ fΓ = f µ-a.e. Moreover, for every ε > 0 there
is U ∈ Σ with µ(Ω \ U) < ε such that limΓ fΓ = f uniformly on U .

Proof. Without loss of generality we may assume that f(Ω) is separable. Fix
ε > 0 and a sequence (εn) of positive real numbers converging to 0.

Fix n ∈ N. We can find a disjoint covering {Dn,k}k∈N of f(Ω) by Borel sets
with diam(Dn,k) < εn. Since {f−1(Dn,k)}k∈N is a partition of Ω into measurable
sets, we can choose jn ∈ N large enough such that

µ
(
f−1

( ⋃
k>jn

Dn,k

))
<

ε

2n
.
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Define Bn,k = f−1(Dn,k) and An,k := ρ(Bn,k) for all k = 1, 2, . . . , jn. Observe

that Vn :=
⋃jn
k=1(An,k

⋂
Bn,k) ∈ Σ satisfies

µ(Vn) =

jn∑
k=1

µ(An,k ∩Bn,k) =

jn∑
k=1

µ(Bn,k) = µ
(
f−1

( jn⋃
k=1

Dn,k

))
> µ(Ω)− ε

2n
.

Set

An,jn+1 := Ω \
jn⋃
k=1

An,k = ρ
(
f−1

( ⋃
k>jn

Dn,k

))
and let Γn ∈ 0 be the partition of Ω consisting of all non-empty An,k’s.

We claim that ‖fΓ(t) − f(t)‖ < εn for every Γ ∈ 0 with Γ � Γn and every
t ∈ Vn. Indeed, let k ∈ {1, . . . , jn} be such that t ∈ An,k ∩Bn,k. Then An,k ∈ Γn
and there is A ∈ Γ such that t ∈ A ⊂ An,k, so that µ(A \Bn,k) = 0 and

fΓ(t) =
1

µ(A)

∫
A
f dµ =

1

µ(A ∩Bn,k)

∫
A∩Bn,k

f dµ ∈ co
(
f(A ∩Bn,k)

)
⊂ co(Dn,k),

thanks to the Hahn-Banach separation theorem. Since f(t) ∈ f(Bn,k) ⊂ Dn,k

and diam(co(Dn,k)) = diam(Dn,k) < εn, we get ‖fΓ(t)− f(t)‖ < εn, as claimed.
The previous claim ensures us that limΓ fΓ = f uniformly on U :=

⋂
n∈N Vn,

which belongs to Σ and satisfies

µ(Ω \ U) = µ
( ⋃
n∈N

Ω \ Vn
)
≤
∑
n∈N

µ(Ω \ Vn) <
∑
n∈N

ε

2n
= ε.

Since ε > 0 is arbitrary, a standard argument now implies that limΓ fΓ = f µ-a.e.
2

We stress that, in particular, Lemma 3.7 is applicable to ordinary real-valued
Lebesgue integrable functions.

Remark 3.8 The conclusion of Lemma 3.7 can fail without the strong measur-
ability assumption. In fact, for a Banach space X, a Pettis integrable function
f : Ω→ X is strongly measurable if, and only if, we have

(a) limΓ fΓ = f µ-a.e. and

(b) the set R(f) = {
∫
A f dµ : A ∈ Σ} is separable.

Such separability condition is fulfilled automatically for any Pettis integrable func-
tion f : Ω→ X under mild assumptions on either µ or X, see e.g. [22, Sections 9
and 10] and [25, Chapters 4 and 5]. Also, if f : Ω→ X is Birkhoff or McShane
integrable then R(f) is relatively norm compact [2, 13], hence R(f) is separable
and therefore for such an f if limΓ fΓ = f µ-a.e. then f is neccesarily strongly
measurable.
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From now on we work with a fixed ultrafilter U on 0 containing all subsets
of 0 of the form {Γ′ ∈ 0 : Γ′ � Γ} where Γ ∈ 0.

Definition 3.9 Let {VΓ : Γ ∈ 0} be a collection of subsets of X. We denote
by LIMΓ VΓ the set (maybe empty) of all x ∈ X for which there exist vΓ ∈ VΓ,
Γ ∈ 0, such that U − limΓ vΓ = x.

Proof. [Proof of Theorem 3.1] For every Γ ∈ 0, define MΓ : Ω→ ck(X) by

MΓ :=
∑
A∈Γ

M(A)

µ(A)
1A.

Given any t ∈ Ω, we have MΓ(t) ⊂ Q for all Γ ∈ 0 and so the compactness of Q
yields ∅ 6= LIMΓMΓ(t) ⊂ Q. We can define a multifunction F : Ω→ ck(X) by

F (t) := LIMΓMΓ(t). (1)

Let us check that F satisfies the required properties.

In order to prove (i), let m be a countably additive selector of M . For each

Γ ∈ 0, define mΓ : Ω → Q ⊂ X by mΓ :=
∑

A∈Γ
m(A)
µ(A) 1A. Then we can define a

function f : Ω→ X by f(t) := U − limΓmΓ(t). Observe that f is a selector of F ,
because mΓ is a selector of MΓ for every Γ ∈ 0.

Fix x∗ ∈ X∗. Clearly, x∗ ◦m is countably additive. Moreover, the inequalities

min(x∗(Q))µ(A) ≤ x∗(m(A)) ≤ max(x∗(Q))µ(A) for all A ∈ Σ

imply that x∗ ◦m has bounded variation and x∗ ◦m� µ. Let h be the Radon-
Nikodým derivative of x∗ ◦ m with respect to µ. Note that for each Γ ∈ 0 we
have

hΓ =
∑
A∈Γ

( 1

µ(A)

∫
A
h dµ

)
1A =

∑
A∈Γ

(x∗ ◦m)(A)

µ(A)
1A = x∗ ◦mΓ.

By Lemma 3.7 applied to h, we have limΓ x
∗ ◦mΓ = h µ-a.e. On the other hand,

by the definition of f we have U − limΓ(x∗ ◦mΓ)(t) = (x∗ ◦ f)(t) for every t ∈ Ω.
It follows that x∗ ◦ f = h µ-a.e. Hence x∗ ◦ f is integrable and satisfies∫

A
x∗ ◦ f dµ =

∫
A
h dµ = x∗(m(A)) for all A ∈ Σ.

As x∗ ∈ X∗ is arbitrary, f is a Pettis integrable Radon-Nikodým derivative of m.

We now turn to the proof of (ii). Fix x∗ ∈ X∗. The finitely additive measure
ν : Σ→ R defined by the formula ν(A) := δ∗(x∗,M(A)) satisfies

min(x∗(Q))µ(A) ≤ ν(A) ≤ max(x∗(Q))µ(A) for all A ∈ Σ.
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Hence ν is countably additive, it has bounded variation and ν � µ. Let g be the
Radon-Nikodým derivative of ν with respect to µ. For every Γ ∈ 0 we have

gΓ =
∑
A∈Γ

( 1

µ(A)

∫
A
g dµ

)
1A =

∑
A∈Γ

δ∗(x∗,M(A))

µ(A)
1A = δ∗(x∗,MΓ).

Lemma 3.7 applied to g ensures us that limΓ δ
∗(x∗,MΓ) = g µ-a.e; bearing in

mind now the equality (1) it follows that

δ∗(x∗, F ) ≤ U − lim
Γ
δ∗(x∗,MΓ) = g µ-a.e. (2)

� Claim. The function δ∗(x∗, F ) is integrable.

Indeed, observe first that the mapping M |x∗ : Σ → ck(X) is a strong multimea-
sure (by Lemma 3.5) and has bounded variation because M |x∗(A) ⊂ µ(A)Q for
every A ∈ Σ. Lemma 3.4 provides us with a countably additive selector m of
M |x∗ , that is also a selector of M that satisfies

x∗(m(A)) = δ∗(x∗,M(A)) =

∫
A
g dµ for all A ∈ Σ.

By (ii), there is a Pettis integrable selector f of F such that for every A ∈ Σ
we have

∫
A f dµ = m(A) and so

∫
A x
∗ ◦ f dµ = x∗(m(A)) =

∫
A g dµ. Therefore

x∗ ◦ f = g µ-a.e. On the other hand, in view of (2) we also have x∗ ◦ f ≤
δ∗(x∗, F ) ≤ g µ-a.e. It follows that δ∗(x∗, F ) = x∗ ◦ f µ-a.e., hence δ∗(x∗, F ) is
integrable, as claimed.

Moreover, for every A ∈ Σ we have∫
A
δ∗(x∗, F ) dµ =

∫
A
x∗ ◦ f dµ = x∗(m(A)) = δ∗(x∗,M(A)).

Since x∗ ∈ X∗ is arbitrary, F is Pettis integrable and M(A) =
∫
A F dµ for all

A ∈ Σ.
To finish the proof of (ii), fix A ∈ Σ and note that the Hahn-Banach separation

theorem implies

M(A) ⊃
{∫

A
f dµ : f is a Pettis integrable selector of F

}
=: S(A).

In order to prove the converse inclusion, take any x ∈M(A). Lemma 3.4 applied
to the restriction of M to the trace σ-algebra ΣA := {B ∩A : B ∈ Σ} guarantees
the existence of a countably additive selector m1 : ΣA → X of M |ΣA

such that
x = m1(A). Now let m : Σ→ X be any countably additive selector of M . Then
the formula

m̃1(B) := m1(B ∩A) +m(B \A)
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defines a countably additive selector m̃1 : Σ → X of M extending m1. By
part (i) applied to m̃1, there is a Pettis integrable selector f of F such that
m̃1(B) =

∫
B f dµ for all B ∈ Σ. So, x = m̃1(A) =

∫
A f dµ ∈ S(A). We have

finally established that M(A) = S(A). The proof is over. 2

In the last result of this section cw∗k(X∗) denotes the family of all non-empty
convex w∗-compact subsets of the dual X∗ of a Banach space X; w∗ is the weak∗

topology of X∗ and BX∗ stands for the closed dual unit ball. For the concept
and properties of Gel’fand integral for multifunctions we refer to the paper [5].

Proposition 3.10 Let X be a Banach space and let M : Σ → cw∗k(X∗) be a
µ-continuous strong multimeasure for the dual norm with bounded norm variation
|M |. Then there exists a Gel’fand integrable multifunction F : Ω → cw∗k(X∗)
such that for every A ∈ Σ we have

M(A) =

∫
A
F dµ =

{∫
A
f dµ : f is a Gel’fand integrable selector of F

}
.

Proof. Let g be the Radon-Nikodým derivative of |M | with respect to µ. For
each n ∈ N let us define An := {t ∈ Ω : n − 1 ≤ g(t) < n} ∈ Σ and write
Σn := {A∩An : A ∈ Σ}. The restriction M |Σn : Σn → cw∗k(X∗) satisfies that for
every A ∈ Σn we have M(A) ⊂ µ(A)

(
nBX∗

)
. According to Theorem 3.1 applied

to the locally convex space (X∗, w∗) there is a Gel’fand integrable multifunction
Fn : An → cw∗k(X∗) such that

M(A) =

∫
A
Fn dµ for every A ∈ Σn. (3)

Note that {An}n∈N is a partition of Ω in Σ, therefore the multifunction

F : Ω→ cw∗k(X∗), F (t) := Fn(t) whenever t ∈ An,

clearly satisfies that δ∗(x, F ) is measurable for every x ∈ X. On the other hand
for every n ∈ N, every A ∈ Σn and every x ∈ X, we have that∫

A
δ∗(x, F ) dµ =

∫
A
δ∗(x, Fn) dµ = δ∗(x,M(A)) ≤

≤ ‖x‖‖M(A)‖ ≤ ‖x‖|M |(A) = ‖x‖
∫
A
g dµ.

Therefore, for every x ∈ X we have δ∗(x, F (t)) ≤ ‖x‖g(t) for µ-a.e. t ∈ Ω. Hence,
for every x ∈ X we also have

−δ∗(x, F (t)) = inf{−x∗(x) : x∗ ∈ F (t)} ≤ δ∗(−x, F (t)) ≤ ‖ − x‖g(t) = ‖x‖g(t)
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for µ-a.e. t ∈ Ω and consequently δ∗(x, F ) is integrable. So F is Gel’fand inte-
grable.

To finish we will establish that for every A ∈ Σ we have M(A) =
∫
A F dµ,

which is equivalent to proving that δ∗(x,M(A)) = δ∗(x,
∫
A F dµ) for every x ∈ X,

because both sets are convex and w∗-compact (see [5, Theorem 4.5] for the
latter). On one hand, for each x ∈ X the measure νx : Σ → R given by
νx(A) := δ∗(x,M(A)) is countably additive. On the other hand, since F is
Gel’fand integrable, for each x ∈ X the measure σx : Σ → R defined by
σx(A) := δ∗(x,

∫
A F dµ) =

∫
A δ
∗(x, F ) dµ is also countably additive. The for-

mula (3) implies in particular that νx|Σn = σx|Σn for every n ∈ N, and finally the
countable additivity of νx and σx leads to νx = σx in Σ. The proof is over. 2

4 Set-valued derivatives in Banach spaces with the
RNP

Throughout this section X is assumed to be a Banach space. Our aim here is to
demonstrate the following statement:

Theorem 4.1 Suppose X has the RNP. Let M : Σ → bcc(X) be a strong mul-
timeasure of bounded variation with M � µ. Then there is a Pettis integrable
multifunction F : Ω→ bcc(X) such that:

(i) For every countably additive selector m of M there is a Bochner integrable
selector of F such that m(A) =

∫
A f dµ for all A ∈ Σ.

(ii) For every A ∈ Σ the following equalities hold:

M(A) =

∫
A
F dµ =

{∫
A
f dµ : f is a Bochner integrable selector of F

}
.

This result generalizes the theorem 2 of [7] proved for separable spaces. The
anonymous referee kindly communicated to us that in the case of strongly com-
pact values the theorem reduces to the separable case, but already for weakly
compact values there is no such a reduction. Before offering a proof for Theo-
rem 4.1 we need a lemma:

Lemma 4.2 Suppose X has the RNP. Let M : Σ → bcc(X) be a strong multi-
measure of bounded variation. Then there exist a norm dense set W ⊂ X∗ and
a family {mx∗}x∗∈W of countably additive selectors of M such that

x∗(mx∗(A)) = δ∗(x∗,M(A)) for every x∗ ∈W and every A ∈ Σ.

12



Proof. By the Bishop-Phelps theorem (see e.g. [10, p. 3]), the set W :=
att(M(Ω)) is norm dense in X∗. Fix x∗ ∈ W . Then Lemma 3.5 ensures that
M |x∗ : Σ → bcc(X) is a strong multimeasure. Since M |x∗(A) ⊂ M(A) for all
A ∈ Σ and M has bounded variation, M |x∗ has bounded variation as well. Since
M |x∗(Ω) ∈ bcc(X) and X has the RNP, we have ext(M |x∗(Ω)) 6= ∅ (see e.g. [10,
Theorem 1, p. 231]). Therefore, Lemma 3.4 applied to M |x∗ guarantees the exis-
tence of a countably additive selector mx∗ of M |x∗ . Of course, mx∗ is a selector
of M and we have x∗(mx∗(A)) = δ∗(x∗,M(A)) for all A ∈ Σ. 2

Proof of Theorem 4.1 As in the proof of Theorem 3.1, for each Γ ∈ 0 we
consider the multifunction MΓ : Ω→ bcc(X) given by

MΓ :=
∑
A∈Γ

M(A)

µ(A)
1A

and, for each t ∈ Ω, we define

G(t) := LIMΓMΓ(t)

(with respect to the norm topology). We shall prove first that

∅ 6= G(t) ∈ bcc(X) for µ-a.e. t ∈ Ω. (4)

Obviously, G(t) is convex for all t ∈ Ω. To check that G(t) 6= ∅ for µ-a.e. t ∈ Ω,
let m be any countably additive selector of M (apply Lemma 4.2). Observe that
m has bounded variation and m� µ. Since X has the RNP, there is a Bochner
integrable function f : Ω → X such that m(A) =

∫
A f dµ for all A ∈ Σ. In

particular, for every Γ ∈ 0 and every t ∈ Ω we have

fΓ(t) =
∑
A∈Γ

( 1

µ(A)

∫
A
f dµ

)
1A(t) =

∑
A∈Γ

m(A)

µ(A)
1A(t) ∈MΓ(t).

According to Lemma 3.7, we have limΓ fΓ = f µ-a.e., hence f(t) ∈ G(t) 6= ∅
for µ-a.e. t ∈ Ω. On the other hand, |M | is a countably additive finite mea-
sure (Proposition 3.3) with |M | � µ and we can consider its Radon-Nikodým
derivative g with respect to µ. For every Γ ∈ 0 and every t ∈ Ω we have

‖MΓ(t)‖ =
∑
A∈Γ

‖M(A)‖
µ(A)

1A(t) ≤
∑
A∈Γ

|M |(A)

µ(A)
1A(t) =

=
∑
A∈Γ

( 1

µ(A)

∫
A
g dµ

)
1A(t) = gΓ(t).

Bearing in mind that limΓ gΓ = g µ-a.e. (by Lemma 3.7), it follows from the
equality above that ‖G(t)‖ ≤ g(t) < ∞ for µ-a.e. t ∈ Ω. This finishes the proof
of (4).
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Now let F : Ω → bcc(X) be any multifunction such that F (t) = G(t) for
µ-a.e. t ∈ Ω. We shall check that F satisfies the required properties. Observe
that (i) has already been obtained in the proof of (4).

By Lemma 4.2, there exist a norm dense set W ⊂ X∗ and a family {mx∗}x∗∈W
of countably additive selectors of M such that

x∗(mx∗(A)) = δ∗(x∗,M(A)) for every x∗ ∈W and every A ∈ Σ.

Thus, (i) applied to each mx∗ ensures us of the existence of a family {fx∗}x∗∈W
of Bochner integrable selectors of F such that∫

A
(x∗ ◦ fx∗) dµ = x∗

(∫
A
fx∗ dµ

)
= δ∗(x∗,M(A)) (5)

for every x∗ ∈W and every A ∈ Σ.
Fix x∗ ∈W . Given Γ ∈ 0 and t ∈ Ω, we have

δ∗(x∗,MΓ(t))
t∈A,A∈Γ

= sup

{
x∗(x) : x ∈ M(A)

µ(A)

}
=
δ∗(x∗,M(A))

µ(A)
=

(5)
=

1

µ(A)

∫
A

(x∗ ◦ fx∗) dµ = (x∗ ◦ fx∗)Γ(t).

Last equality and Lemma 3.7 (applied to x∗ ◦fx∗) yield δ∗(x∗, F ) ≤ x∗ ◦fx∗ µ-a.e.
Since fx∗ is a selector of F we have δ∗(x∗, F ) = x∗ ◦ fx∗ µ-a.e. Hence δ∗(x∗, F ) is
integrable and (5) says that∫

A
δ∗(x∗, F ) dµ = δ∗(x∗,M(A)) for all A ∈ Σ. (6)

Let us consider now an arbitrary x∗ ∈ X∗. Since W is norm dense in X∗, we
can find a sequence (x∗n) in W such that ‖x∗n − x∗‖ → 0. Since F takes bounded
values, we have δ∗(x∗n, F ) → δ∗(x∗, F ) pointwise. Moreover, for each n ∈ N we
have

|δ∗(x∗n, F (t))| ≤ ‖x∗n‖‖F (t)‖ ≤ Cg(t) for µ-a.e. t ∈ Ω,

where C := supk∈N ‖x∗k‖ and g is the Radon-Nikodým derivative of |M | with re-
spect to µ (see the proof of (4) above). An appeal to the Dominated Convergence
Theorem assures that δ∗(x∗, F ) is integrable and that∫

A
δ∗(x∗, F ) dµ = lim

n→∞

∫
A
δ∗(x∗n, F ) dµ

(6)
= lim

n→∞
δ∗(x∗n,M(A)) = δ∗(x∗,M(A))

for every A ∈ Σ. This proves that F is Pettis integrable and

M(A) =

∫
A
F dµ for every A ∈ Σ.
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Fix A ∈ Σ. Observe that the inclusion

M(A) =

∫
A
F dµ ⊃

{∫
A
f dµ : f is a Bochner integrable selector of F

}
=: S(A)

follows directly from the Hahn-Banach separation theorem. To prove the converse
inclusion, take any x ∈ ext(M(A)). By Lemma 3.4 applied to M |ΣA

, there is
a countably additive selector m1 : ΣA → X of M |ΣA

such that x = m1(A).
Let m̃1 : Σ → X be any countably additive selector of M extending m1 (see
the proof of (ii) in Theorem 3.1). By (i) applied to m̃1, there is a Bochner
integrable selector f of F such that m̃1(B) =

∫
B f dµ for all B ∈ Σ. Thus,

x = m̃1(A) =
∫
A f dµ ∈ S(A). This shows that ext(M(A)) ⊂ S(A) and so we

have co(ext(M(A))) ⊂ S(A) (because S(A) is convex). Since

M(A) = co
(
ext(M(A)

)
thanks to the RNP (see e.g. [10, Theorem 1, p. 231]), we conclude that M(A) =
S(A). The proof is over. 2

Remark 4.3 If we additionally assume that X∗ has the RNP and M takes values
in cwk(X) in Theorem 4.1, then

SF := {f : Ω→ X : f is Bochner integrable selector of F}

is relatively weakly compact in L1(µ,X).

Proof. For any f ∈ SF , let mf : Σ→ X be the countably additive selector of M
defined by mf (A) :=

∫
A f dµ. Observe that∫

A
‖f‖ dµ = |mf |(A) ≤ |M |(A) for all A ∈ Σ.

From the previous inequality and the fact that |M | is a µ-continuous countably
additive finite measure (Proposition 3.3) it follows that SF is uniformly integrable.
Moreover, for each A ∈ Σ, the set{∫

A
f dµ : f ∈ SF

}
⊂M(A)

is relatively weakly compact in X. Since X∗ has the RNP, we infer that SF is
relatively weakly compact in L1(µ,X) (see e.g. [11, Theorem 1, p. 101]). 2

If X is separable and F : Ω→ 2X is an Effros measurable multifunction taking
closed non-empty values, then the relative weak compactness of SF in L1(µ,X)
implies that F (t) is weakly compact in X for µ-a.e. t ∈ Ω, see [18, Theorem 3.6].
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So the answer to the following natural question is affirmative when X is separable
[7, Theorem 3]:

Question. Under the assumptions of Theorem 4.1, suppose further that X∗ has
the RNP and M takes values in cwk(X). Is it possible to construct F in such a
way that F (t) ∈ cwk(X) for µ-a.e. t ∈ Ω? Does our construction give F with
this additional property?

Acknowledgement. We express our gratitude to the referee for several useful
comments, in particular for telling us about Kupka’s paper [21] where a similar
idea of constructing Radon-Nikodým derivatives was introduced for single-valued
vector measures and Bochner integrable Radon-Nikodým derivatives.
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