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A characterization of metrizability

Exercise. . . from Engelking's book

4.2.B (Sneider [1945]). Show that a compact space X is metrizable
if and only if the diagonal A is a Gyset in the Cartesian product X x X
(see Problem 3.12.22(e); cf. Problem 4.5.15 and Exercise 5.1.I).
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Kind of problems studied

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Aq C Ag whenever a < ;
(C) (KxK)\A=U{Ax: ac N}
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(C) (KxK)\A=U{Ax: ac N}
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Theorem (Orihuela, Tkachuk, B.C. 2010)

(A) + (B) + (C) + MA(w1) = K is metrizable.
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Kind of problems studied

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Aq C Ag whenever a < ;
(C) (KxK)\A=U{Ax: ac N}

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
or each compact set F C (K x , there is Aq such that F C Ag.
D) F h FC(KxK)\A, thereis A h that F C A

Theorem (Orihuela, Tkachuk, B.C. 2010)

(A) + (B) + (C) + MA(w1) = K is metrizable.

Open question

(A) + (B) + (C) 2 K is metrizable.
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The results of this paper clarify and extend slightly the previous work of Dolecki
and Lechicki (C. R. Acad. Sci. Paris 293 (1981), 219-221; J. Math. Anal. Appl. 88
(1982), 547-584) and Hansell, Jayne, Rogers and the author (Math. Z. 189 (1985),
297-318). Let X, Y be Hausdor(T spaces and F: X — ¥ an upper semicontinuous set-
valued map. A subset K of F(x) is said to be a peak of F at x, if, for every open set
V containing K, there exists a neighbourhood U of x such that F({UNF(x)< V.
Criteria (“Choquet-Dolecki Theorems”) are given in order that F has the smallest
possible peak. It turns out that in unexpectedly general situations an upper
semicontinuous map F has, for every x in X, a peak which is the smallest possible
at x and moreover compact. < 1987 Academic Press, Inc.

1. THE RESULTS

Let X, Y be Hausdorfl spaces, and let F: X — Y be a set-valued map. In
what follows the term “map” means always such a set-valued map.
A cap (of upper semicontinuity) of F at x, is a set K in Y such that the
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INHERENT COMPACTNESS OF
UPPER CONTINUOUS SET VALUED MAPS

BRIAN L. DAVIS AND IWO LABUDA

The following theorem is due to Cascales and Orihuela [8], see also
(7).

3.4. Theorem. The following are equivalent for B with a countable
base.

(i) For each (yn) > B, the closure {y, : n € N} is countably compact.

(ii) B is countably compact at adh,,B which itself is countably com-
pact.

The proof given here follows [26] rather than [8]. What is really
interesting though, is the link between this result and the Vainstein-
Choquet-Dolecki theorem. Cascales and Orihuela knew [22], but their
applications do not go beyond points of countable character treated in
[25]. On the other hand, a part of the arguments in [26] could have
been skipped using the above theorem.
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Notation

e LM,...X,Y,... topological spaces; E,F Banach or
sometimes lcs;

@ K compact Hausdorff space;
o 2X subsets: A (X) family of compact sets;

e C(X) continuous functions; C,(X) continuous functions
endowed with the pointwise convergence topology 7p;
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Notation

e LM,...X,Y,... topological spaces; E,F Banach or
sometimes Ics;

@ K compact Hausdorff space;
o 2X subsets: A (X) family of compact sets;

e C(X) continuous functions; C,(X) continuous functions
endowed with the pointwise convergence topology 7p;

@ Q C C open set; () space of holomorphic functions with
the topology of uniform convergence on compact sets;

e Q C R" open set; 2'(Q2) space of distributions;

° L)E” inductive limit of a sequence of Fréchet spaces.
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Definitions

Upper semi-continuous set-valued map (multi-function)

X g oY

@ Y is K-analytic if there is y : NN — 2Y that is upper semi-continuous
compact-valued and such that Y =gy W(@);

NN &< any Polish space P J
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Definitions

Upper semi-continuous set-valued map (multi-function)

X : 9v

Y

Y & any second countable space M (Lindelof X)

@ Y is countably K-determined if there is ¥ ¢ NN and y: ¥ — 2Y that is
upper semi-continuous compact-valued and such that Y = [Jyes W(@).
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Ify: X — 2Y that is upper semi-continuous compact-valued, then
K C X is compact = y(K) is compact;

if w:X —2Y that is upper semi-continuous compact-valued, then
L C X is Lindeléf = y(L) is Lindeldf;

K-analytic = countably K-determined = Lindelof;

countably K-determined + metrizable = separable;
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© K-analytic = countably K-determined = Lindelof;

@ countably K-determined + metrizable = separable;

@ if X is K-analytic (v : NN = 2X) and Ay := y({B : B < a}) then:
(A) each Aq is compact;
(B) Aq C Ag whenever o < f3;
(C) X =U{Aq:aec N}
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Well known facts

Q Ify: X— 2Y that is upper semi-continuous compact-valued, then
K C X is compact = y(K) is compact;

@ if yw: X —2Y that is upper semi-continuous compact-valued, then
L C X is Lindeléf = y(L) is Lindeldf;

© K-analytic = countably K-determined = Lindelof;
@ countably K-determined + metrizable = separable;
@ if X is K-analytic (v : NN = 2X) and Ay := y({B : B < a}) then:
(A) each Aq is compact;
(B) Aq C Ag whenever o < f3;
(C) X =U{Aq:aec N}
@ ditto, if X is countably K-determined, there is a second countable space
M and a family {Ak : K € 7# (M)} such that:
(A) each Ak is compact;
(B) Ak C Ar whenever K C F;
(C) X =U{Ax : K € #(M)}.
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Domination by Polish Spaces

Definition

A topological space X is dominated by a Polish space, if there is a
Polish space P and a family {Ax : K € 7#(P)} C X such that:
(A) each Ak is compact;

(B) Ak C Ar whenever K C F;

(C) X=U{Ak: K e x(P)}.
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Domination by Polish Spaces

Definition

A topological space X is dominated by a Polish space, if there is a
Polish space P and a family {Ax : K € 7#(P)} C X such that:

(A) each Ak is compact;
(B) Ak C Ar whenever K C F;
(C) X=U{Ak : Kex(P)}.

Proposition
For a topological space X the TFAE:
@ X is dominated by a Polish space;
@ There is a family {Aq : @ € NV} of subsets of X with:
(A) each Ay is compact;
(B) Aq C Ag whenever o < f3;
(C) X=U{Aq: a N}




Domination by Polish Spaces
oce

K-analyticity implies domination by Polish spaces

Observation

If X is K-analytic (w: NN —2X) and A, := w({B : B < a}) then:
(A) each Ay is compact;

(B) Aq C Ag whenever a < fB;

(C) X =U{As: a e N},
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The question
@ When domination by Polish spaces implies K-analyticity?

| 5\

A,
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Observation

If X is K-analytic (w: NN —2X) and A, := w({B : B < a}) then:
(A) each Ay is compact;
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(C) X =U{As: a e N},

The question
@ When domination by Polish spaces implies K-analyticity?

| 5\

@ How useful is a positive answer to the above?

A,
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A nice old case

Anunls of Ma

cicas, 118 (1979, 407-438

Fapaces de Banach faiblement
JC-analytiques

Par MICKEL TALAGRAND

PROPOSITION 6.18, Soit K un espace compact. Les assertions sutvantes
sont éguivalentes:

&), K est de type &,

b). Il exisic une application croissante 0 -+ A, de £ (muni de ordre
produit) dans Pensemble des compacts de €, (K) telle que L,y A, sépare les
points de K.

Démonstration. Nous savons déja que a) implique b) l'application
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Valdivia,

QUASI-LB-SPACES

MANUEL VALDIVIA

We shall see later that properties (1) and (2) are important in order to obtain some
results on the closed graph theorem. This is the reason for introducing the following
definitions. A quasi-LB-representation in a topological vector space F is a family
{Ay: ae NN} of Banach discs satisfying the following conditions :

1. J{4y: aeNN} = F;

2. if o, fe NN and a < B then A, < Ap.
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Domination by Polish implies (many times) K-analyticity

@ Let X be a topological space {Ay : o € NN} of subsets of X with:
(A) each Ay is compact;
(B) Aq C Ag whenever o < f3;
(C) X =U{Ax:aec N}
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Domination by Polish implies (many times) K-analyticity

@ Let X be a topological space {Ay : & € NN} of subsets of X with:
(A) each Ag is compact;
(B) Aq C Ag whenever o < f3;
(C) X =U{Aq:aec N}

@ Given o = (ny) € NY¥ and m € N, define

a|m = (n17n27-~-7nm)~

Proposition, B. C., 1987

Given X and {Aq : @ € NV} as above, if we define y: NN — 2X given by

y(a):= () U{Ap : Blm = alm}
m=1

then:

@ each y(a) is countably compact (even more, all cluster points of any
sequence in y(a) remain in y(a)).

@ if y(a) is compact then ov — () gives K-analytic structure to X.
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Domination by Polish implies (many times) K-analyticity

@ Let X be a topological space {Ay : & € NN} of subsets of X with:
(A) each Ag is compact;
(B) Aq C Ag whenever o < f3;
(C) X =U{Aq:aec N}
@ Given o = (ny) € NY¥ and m € N, define
om:=(n1,n,....,nm).

Proposition, B. C., 1987

Given X and {Aq : @ € NV} as above, if we define y: NN — 2X given by

y(a):= () U{Ap : Blm = alm}
m=1

then:
@ each y(a) is countably compact (even more, all cluster points of any
sequence in y(a) remain in y(a)).

@ if y(a) is compact then ov — () gives K-analytic structure to X.

X has K-analytic structure if countably compact subsets=compact subsets. J
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Talagrand's solution to a conjecture Corson

Theorem, Talagrand 1975, Bull. Sci. Math.
Every WCG Banach space E is weakly Lindelof.

Proof .-
@ Fix W C E absolutely convex w-compact with E = spanW/.

@ Given a = (ny) € NV,

Ag = (n1W+BE**)ﬁ(n2W+%BE*¥)ﬂ-~-ﬂ(n1W+%BEw)ﬂ...

@ Proposition = (E,w) K-analytic = (E,w) Lindeldf. &
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Fréchet-Montel spaces

Theorem, Dieudonné 1954

Every Fréchet-Montel space E is separable (in particular 5#(Q) is separable).

Proof.-

@ Fix Vi D Vo D--- D V,... a basis of closed neighborhoods of 0.
@ Given o = (n;) e NN,
Aa = m ny Vk.
k=1
@ {Ay:ac NV} fundamental family of bdd closed sets=compact;

@ Proposition = E K-analytic +metrizable = E Lindel6f 4+ metrizable =
E separable. &
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2'(Q) is analytic

Theorem, 2'(2) is analytic.

The strong dual of every inductive limit of Fréchet-Montel spaces is analytic.
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2'(Q) is analytic

Theorem, 2'(2) is analytic.

The strong dual of every inductive limit of Fréchet-Montel spaces is analytic.

E, S E, > = E, = “— E
Ul v? T

a = (ng)x
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2'(Q) is analytic

Theorem, 2'(2) is analytic.

The strong dual of every inductive limit of Fréchet-Montel spaces is analytic.

E, = E = = E = — E
Ul Uz Uy
u U u
u
o = : )
a= () U] U U
v (v2) ;
V]

Uy = aco(Ule Uﬁk)

@ UgClUnysia<PB; % :={Ux: a € NN} neigh. basis of 0 en E.
@ Ay := Uy compact & Aq C Ag, o < fB;

@ E'=U{Ay: €N} and E’ sub-metrizable = E’ K-analytic
sub-metrizable = E’ analytic.
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2'(Q) is analytic

Theorem, 2'(2) is analytic.

The strong dual of every inductive limit of Fréchet-Montel spaces is analytic.

E — Ey — = E, — — E
U} U2 U;
U U U
U
o Y : ()
a=m)x (03] U U
v (v2) ;
U

Schwartz, 1964

Any Borel linear map from a separable Banach space into 2/(Q) is continuous.
In particular, the Closed Graph Theorem holds for linear maps

T:2'(Q) - 7(9).
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Metrizability of compact sets (1)

K compact space & {Ay : a € NV} subsets of (K x K)\ A. We
write:

(A) each Ay is compact;

(B) Aq C Ag whenever o < j3;

(C) (Kx K)\A=U{Ay: ac N} )

Theorem (Orihuela, B.C. 1987)
(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Ay such that
F CAq.
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(A) each Aq is compact;
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Theorem (Orihuela, B.C. 1987)
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(D) For each compact set F C (K x K)\ A, there is Aq such that F C Aq.

Proof .-
@ Given a € NN, define Ny := (K x K)\ Aq.
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for o)™ := (N, Npt1,...), mEN.
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Theorem (Orihuela, B.C. 1987)
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Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
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Proof .-
@ Given a € NN, define Ny := (K x K)\ Aq.
@ Ny is a basis of open neighborhoods of A;
© By :={f € C(K):||fllo < n1,|f(x) = f(y)| < &, whenever (x,y) € Nym};
for o)™ := (N, Npt1,...), mEN.
o

(A) each By is || ||-bdd & closed & equicontinuous =l By s
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(A) each Aq is compact;
G (B) AqcC Aﬁ whenever a < ;

(C) (KxK)\A=U{Aq:aecN}

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Aq such that F C Ag.

Proof .-
@ Given a € NN, define Ny := (K x K)\ Aq.
@ Ny is a basis of open neighborhoods of A;
© By :={f € C(K):||fllo < n1,|f(x) = f(y)| < &, whenever (x,y) € Nym};
for o)™ := (N, Npt1,...), mEN.
o

(A) each By is || ||-bdd & closed & equicontinuous =l By s
|| ||le-compact;

(B) By C Bg whenever a < 3;

(C) C(K)={By:oecN"}



Theorem (Orihuela, B.C. 1987)

K compact space & {Aq : o € NV} subsets of (K x K)\ A. We write:
(A) each Aq is compact;

(B) AaCAI} whenever a < ;
(€) (KxK)\A=UfAq:aeN}.

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Aq such that F C Ag.

Proof .-
@ Given a € NN, define Ny := (K x K)\ Aq.
@ Ny is a basis of open neighborhoods of A;

© Bu:={feC(K):|flle < ni,|f(x)—Ff(y) < %, whenever (x,y) € Nym};
for o)™ := (N, Npt1,...), mEN.

o

(A) each By is || ||-bdd & closed & equicontinuous =l By s
|| ||le-compact;

(B) By C Bg whenever a < 3;

(C) C(K)=U{By:acN"}.

Q (C(K),|| |l) is K-analytic +metrizable = E Lindelof + metrizable = E
separable = K is metrizable. &
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Metrizability of compact sets (I): A different formulation

We didn't stated our result below as presented.
K compact space & {Agy : @ € NN} subsets of (K x K)\ A. We write:
(A) each Ay is compact;
(B) Aq C Ag whenever a < f3;
(C) (KxK)\A=U{Ax:aec N}

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Ag such that F C Ag.

v
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K compact space & {Agy : @ € NN} subsets of (K x K)\ A. We write:
(A) each Ay is compact;
(B) Aq C Ag whenever a < f3;
(C) (KxK)\A=U{Ax:aec N}

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Ag such that F C Ag.

Theorem (Orihuela, B.C. 1987)

(K,41) a compact uniform space with a basis for the uniformity
By = {Ng : @ € NN} satisfying:

Ng C Ng si o < B whenever a,3 € NN,

Then K is metrizable.
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Metrizability of compact sets (II)

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Ao C Ag whenever a < B;
(C) (KxK)\A=U{Aq: aeN"}.

Theorem (Orihuela, Tkachuk, B.C. 2010)

(A) + (B) + (C) + MA(w1) = K is metrizable.
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Metrizability of compact sets (II)

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) AxC Ag whenever o < B;
(C) (KxK)\A=U{Aq: aeN"}.

Theorem (Orihuela, Tkachuk, B.C. 2010)

(A) + (B) + (C) + MA(w1) = K is metrizable.

Proof.-

Q (A) + (B) + (C) + MA(w;) = K has small diagonal, i.e., for any

uncountable set A C (K x K)\ A there exists an uncountable B C A such
that BNA =0.
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K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Ao C Ag whenever a < B;
(C) (KxK)\A=U{Aq: aeN"}.

Theorem (Orihuela, Tkachuk, B.C. 2010)

(A) + (B) + (C) + MA(w1) = K is metrizable.

Proof.-

@ (A) + (B) + (C) + MA(w1) = K has small diagonal, i.e., for any
uncountable set A C (K x K)\ A there exists an uncountable B C A such
that BNA =0.

@ K has small diagonal = K has countable tightness = K x K has
countable tightness;
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K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Ao C Ag whenever a < B;
(C) (KxK)\A=U{Aq: aeN"}.

Theorem (Orihuela, Tkachuk, B.C. 2010)

(A) + (B) + (C) + MA(w1) = K is metrizable.

Proof.-

@ (A) + (B) + (C) + MA(w1) = K has small diagonal, i.e., for any
uncountable set A C (K x K)\ A there exists an uncountable B C A such
that BNA =0.

@ K has small diagonal = K has countable tightness = K x K has
countable tightness;

Q (KxK)\A is K-analytic
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Metrizability of compact sets (II)

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Aq C Ag whenever a < 3;

(C) (KxK)\A=U{Ay:aecNV}

Proposition, B. C., 1987

Given X and {Aq: o€ NN} as above, if we define y : NN o 2(KxK)\A given by

v(a)= (] U{Ap : Blm = otlm}
m=1

then:

@ each y(a) is countably compact (even more, all cluster points of any sequence in () remain in y(a)).

@ if y(«) is compact then @ — () gives K-analytic structure to (K x K)\ A.

that BNA =0.

@ K has small diagonal = K has countable tightness = K x K has
countable tightness;

Q (KxK)\A is K-analytic
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Metrizability of compact sets (II)

y(e) C y(er), (closure in K x K)
take XEW;
there is A C y(a) countable with x € A;

isxe A= xey(a);

otherwise, x € (A\ A) = x is cluster point of a sequence in y(a) = x € y(a).
4

Proposition, B. C., 1987

Given X and {Aq: o€ NN} as above, if we define y : NN o 2(KxK)\A given by

v(a)= (] U{Ap : Blm = otlm}
m=1

then:

@ each y(a) is countably compact (even more, all cluster points of any sequence in () remain in y(a)).

@ if y(«) is compact then @ — () gives K-analytic structure to (K x K)\ A.
that BNA =0.

@ K has small diagonal = K has countable tightness = K x K has
countable tightness;

Q (KxK)\A is K-analytic
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Metrizability of compact sets (II)

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Ao C Ag whenever a < B;
(C) (KxK)\A=U{Aq: aeN"}.

Theorem (Orihuela, Tkachuk, B.C. 2010)

(A) + (B) + (C) + MA(w1) = K is metrizable.

Proof.-

@ (A) + (B) + (C) + MA(w1) = K has small diagonal, i.e., for any
uncountable set A C (K x K)\ A there exists an uncountable B C A such
that BNA =0.

@ K has small diagonal = K has countable tightness = K x K has
countable tightness;

Q (KxK)\A is K-analytic = (K x K)\ A is Lindelof = A is G5 = K is
metrizable. &



Domination by Second Countable Spaces

Domination by Second
Countable Spaces




Domination by Second Countable Spaces
®00

Domination by Second Countable Spaces

Definition
A topological space X is dominated by a second countable space, if there is a
second countable space M and a family {Ax : K € 72 (M)} C X such that:

(A) each Ak is compact;
(B) Ak C Ar whenever K C F;
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Domination by Second Countable Spaces

Definition
A topological space X is dominated by a second countable space, if there is a
second countable space M and a family {Ax : K € 72 (M)} C X such that:

(A) each Ak is compact;
(B) Ak C Ar whenever K C F;

Theorem (Orihuela, B.C.)

For a topological space TFAE:

@ X is countably K-determined;

@ X is Dieudonné complete and dominated by a second countable space.
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Domination by Second Countable Spaces

Definition
A topological space X is dominated by a second countable space, if there is a
second countable space M and a family {Ax : K € 72 (M)} C X such that:

(A) each Ak is compact;
(B) Ak C Ar whenever K C F;

Theorem (Orihuela, B.C.)
For a topological space TFAE:

@ X is countably K-determined;

@ X is Dieudonné complete and dominated by a second countable space.

The class of spaces dominated by a second countable space enjoy the usual
stability properties we might expect.
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Techniques

Generation of usco maps

Let T be a first-countable, X a topological space and let ¢ : T — 2X be a
set-valued map satisfying the property

U ¢(tp) is relatively compact for each convergent sequence (t,), in T. (1)
neN

If for each x in X we define
C(t) :={xe€ X :thereis t, — t in T, for every n € N there is
Xn € @(tn) and x is cluster point of (xn)n}.

Then:

@ each C(t) is countably compact.

@ if y(t):= C(t) is compact then t — y(t) is usco y: T — #(X).




The following theorem is due to Cascales and Orihuela [8], see also
(7.

3.4. Theorem. The following are equivalent for B with a countable
base.

(i) For each (y,,) > B, the closure {y, : n € N} is countably compact.

(ii) B is countably compact at adh,B which itself is countably com-
pact.

S

Let T be a first-countable, X a topological space and let ¢ : T — 2X be a
set-valued map satisfying the property

U ¢(tp) is relatively compact for each convergent sequence (t,), in T. (1)
neN

If for each x in X we define

C(t) :={xe€ X :thereis t, — t in T, for every n € N there is
Xn € @(tn) and x is cluster point of (xn)n}.
Then:

@ each C(t) is countably compact.

@ if y(t):= C(t) is compact then t — y(t) is usco y: T — #(X).
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T If X is dominated by a second countable space, if there is a second countable space M and a family
(S {Ak : K € (M)} such that:

(A) each Ak is compact;
(B) Ak C Af whenever K C F;
(C) X =U{Ax : K e.x (M)}
We take: T := (. (M),h), ¢(K):= Ak and we can generate the USCO y in many cases.

[ X

Let T be a first-countable, X a topological space and let ¢ : T — 2X be a
set-valued map satisfying the property

U o(tp) is relatively compact for each convergent sequence (t,), in T. (1)
neN

If for each x in X we define

C(t):={xe X :thereis t, — tin T, for every n € N there is
Xn € @(tn) and x is cluster point of (xn)n}.
Then:
@ each C(t) is countably compact.

@ if y(t):= C(t) is compact then t — y(t) is usco y: T — #(X).
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Two noticeable results

Theorem (Orihuela, Tkachuk, B.C. 2010)

Cp(X) is countably K-determined iff is dominated by a second countable space.
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Two noticeable results

Theorem (Orihuela, Tkachuk, B.C. 2010)

Cp(X) is countably K-determined iff is dominated by a second countable space.

Theorem (Orihuela, Tkachuk, B.C. 2010)

Let K be a compact space. If there is a second countable space M and a
family {Ar : F € (M)} C (K x K)\ A such that:

(A) each Af is compact;
(B) Ar C A, whenever F C L;
(C) (KxK)\A=U{AF:Fex (M)}

and

(D) every compact subset of (K x K)\ A is contained in some Af.

Then K is metrizable.
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Open questions

K compact space &
{Aq e NN} C
(Kx K)\A.

We write:

(A) each Ay is compact;

(B) A C Ag whenever
a<p;

() (KxK)\A=U{Aa:
o e NN}

Open question
(A) + (B) + (C) % K is metrizable.
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Open questions

K compact space &
More problems...here! P NP
Domination by second countable spaces {AOC RS N } C

and Lindelsf s-property

B. CASCALES, J. ORIHUELA™® AND V.V. TKACHUK®! (K X K) \ A

Abstruct. Given & space A, a family of sets A of a space X i ordered by M if A={Ax:K is o

compact bt of M} el KL iplis e CAe Wo sty the class 14 of spaces which e compact We write:

We also consider the class A" of spaces X which have  compact cover  ordered by a second

countable space with the additional propesty that, for every compact set PCX there exists

(B) A C Ag whenever

We also establish that, under CH, if X is compact and G, (X) belongs to M° then X is conntable.

diagonal, metrization, orderings by irrationals, orderings by a second countable space, compact cover

function spaces, cosmic spaces, Ro-spaces, Lindeldf E-space, compact space, metrizable space

2000 Mathematcs Subjct Classfation: 5410, 31005, 34030 (C) (K X K) \ A= U{Aa
a e NV}

0. Introduction.

Given a space X we denote by K(X) the family of all compact subsets of X
One of about a dozen equivalent definitions says that X is a Lindeldf S-space (or has
the Lindelsf S-property) if there exists a sccond countable space M and a compact-
valued upper semicontinuous map ¢ : M — X such that J{e(z) : x € M} = X .
(see, e, [RJ, Soction 5.1]). It is worth mentioning that in I‘umnmml Analysis, O
(s conocps s el rfored 0 & condaly - deerminad st pen question

Suppose that X i a Lindelof S-space and lence wo can find a compact-valued
upper semicontinuous surjective map ¢ : M — X for some second countable s 2
M. T we let Fie = U{ip(x) : @ € K} for any compact set K M then the family K i 3

: LAJ/); mnqwl\uf\nmlm(\ subsets of X, covers X and K C L (A) + (B) + (€) = K is metrizable.

» We will say that F is an M-ordered compact cover of X.
The class M of spaces with an M-ordered compact cover for some second
countable space M, was introduced by Cascales and Orihuela in [CO2]. They
proved, among other things, that a Dieudonné complete space is Lindeldf 3 if and

' Rescarcl supported by FEDER and MEC, Project MTM2008-05306
2 Research supported by Fundacidn Séneca de la CARM, Project 08848/P1/08

® Researel supposted by Consejo Nacional de Ciencia y Teenologin de Mésico, Grant U860

* Rescarch supported by Programa Integral de Fortalecimiento Institucional (PIFD), Grant 34336-55
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by a Polish space then X is metrizable here A={(e,2)s0€ X} is the diagonal of the space X. Bosides, (A) each A, is com pact'
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countable space with the additional propesty that, for every compact set PCX there exists

(B) A C Ag whenever

We also establish that, under CH, if X is compact and G, (X) belongs to M° then X is conntable.
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0. Introduction.

Given a space X we denote by K(X) the family of all compact subsets of X
One of about a dozen equivalent definitions says that X is a Lindeldf S-space (or has
the Lindelsf S-property) if there exists a sccond countable space M and a compact-
valued upper semicontinuous map ¢ : M — X such that J{e(z) : x € M} = X

see, ez, |
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es Fic C Fy. We will say that F is an M-ordered compact cover of X.

The class M of spaces with an M-ordered compact cover for some second
countable space M, was introduced by Cascales and Orihuela in [CO2]. They
proved, among other things, that a Dieudonné complete space is Lindeldf 3 if and
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