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THE BISHOP-PHELPS-BOLLOBAS THEOREM AND ASPLUND OPERATORS

B. CASCALES

In this three lectures series we plan to present a strengthening of the Bishop-Phelps property for operators that in the
literature is called the Bishop-Phelps-Bollobds property. Let X be a Banach space and L a locally compact Hausdorff
space. We will prove that if 7' : X — Cy(L) is an Asplund operator and ||T'(z)|| & ||T’|| for some |lzo|| = 1, then
there is an norm attaining Asplund operator S : X — Co(L) and |lug|| = 1 with [|S(uo)|| = ||S|| = ||T|| such that
ug = xp and S = T'. As particular cases we obtain: (A) if 7" is weakly compact, then S can also be taken being weakly
compact; (B) if X is Asplund (for instance, X = c), the pair (X, Cy(L)) has the Bishop-Phelps-Bollobds property for
all L; (C) if L is scattered, the pair (X, Cy(L)) has the Bishop-Phelps-Bollobds property for all Banach spaces X.

Our idea is to present our results mostly in a self-contained way and consequently the plan will be:

Lecture 1: To recall the classical Bishop-Phelps theorem, Bollobds observation and their relationship with Eke-
land’s variational principle;

Lecture 2: To recall the notion of Asplund space, Asplund operator and establish the main ideas behind the
characterization of Asplund spaces and operators via the Radon-Nikodym property and fragmentability;

Lecture 3: To use the tools presented in the two previous lectures and then give a self-contained proof of the
results announced in the abstract.

Key words: Bishop-Phelps, Bollobas, fragmentability, Asplund operator, weakly compact operator, norm attaining.
AMS classification: 46B22, 47B07



When presenting these lectures we are strongly motivated by the fact that general
topology and functional analysis continuously benefit from cross-fertilization between
them. Our starting point for these two lectures, intended for students, are the two
exercises below.

Exercise 1 A compact Hausdorff topological space K is metrizable if, and only, if

(C(K), || loo) is separable.
Exercise 2 From Engelking’s book [3]:

4.2.B (Sneider [1945]). Show that a compact space X is metrizable
if and only if the diagonal A is a Gs-set in the Cartesian product X x X
(see Problem 3.12.22(e); cf. Problem 4.5.15 and Exercise 5.1.I).

Both exercises are connected. From Exercise 1 we will motivate some classical results
about weak compactness in Banach spaces. Exercise 2 can be easily rephrased as follows:
a compact Hausdorff topological space K is metrizable if, and only if, (K x K)\ A =
Upen Fn with each F), a closed subset of K x K. From here we will move to some other
more intriguing cases. To name one, if (K x K)\ A = [J{4q4 : @ € NN} where each A, is
compact and A, C Ag whenever o < 3, we shall prove that the latter assumption also
implies metrizability when either {4, : o € NV} is a fundamental family of compact
subsets for (K x K)\ A or when MA(w;) is assumed. The success when proving these
results relies upon the generation of usco maps. We provide applications (old and new) of
the results and techniques presented here to functional analysis: metrizability of compact
subsets in inductive limits, Lindel6f property of WCG Banach spaces and classification of
compact topological spaces, separability of Fréchet-Montel spaces, Lindel6f-3 character
of spaces Cp,(X), etc. For the students is a good objective to learn all the details of how
to solve both exercises. Furthermore, the lectures will stress on how these simple but
tricky ideas have motivated recent Ph. D. dissertations as a well as some new results
and applications published elsewhere.
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© Domination by Polish Spaces: applications to FA
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e LM,...X,Y,... topological spaces; E,F Banach or
sometimes lcs;

@ K compact Hausdorff space;
o 2X subsets: A (X) family of compact sets;

e C(X) continuous functions; C,(X) continuous functions
endowed with the pointwise convergence topology 7p;
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Notation

e LM,...X,Y,... topological spaces; E,F Banach or
sometimes Ics;

@ K compact Hausdorff space;
o 2X subsets: A (X) family of compact sets;

e C(X) continuous functions; C,(X) continuous functions
endowed with the pointwise convergence topology 7p;

@ Q C C open set; () space of holomorphic functions with
the topology of uniform convergence on compact sets;

e Q C R" open set; 2'(Q2) space of distributions;

° L)E” inductive limit of a sequence of Fréchet spaces.
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First of Two inspiring papers

Valdivia, J. London Math. Soc. 1987

QUASI-LB-SPACES

MANUEL VALDIVIA

We shall see later that properties (1) and (2) are important in order to obtain some
results on the closed graph theorem. This is the reason for introducing the following
definitions. A quasi-LB-representation in a topological vector space F is a family
{Ay: ae NN} of Banach discs satisfying the following conditions :

1. J{4y: aeNN} = F;

2. if o, fe NN and a < B then A, < Ag.

[§ M. Valdivia, Quasi-LB-spaces, J. London Math. Soc. (2) 35
(1987), no. 1, 149-168. MR 88b:46012
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Second of Two inspiring papers

Ananls of Mathem!

avics, 1318 (1879, 407-438

Espaces de Banach faiblement
JC-analytiques

Par MicEL TALAGRAND

PROPOSITION 6.13. Soit K un espace compact. Les assertions sucvantes
sont éguivalentes:

&), K est de type &,

b). Il existe une application croissante ¢ -+ A, de £ (muni de Uordre
produit) dons Pensemble des compacts de C LK) telle que {1 A, sépare les
points de K.

Démonstration. Nous savons déja que a) implique b) ['application

[ M. Talagrand, Espaces de Banach faiblement ¥ -analytiques,
Ann. of Math. (2) 110 (1979), no. 3, 407-438. MR 81a:46021
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Simple facts to keep in mind

@ N endowed with the product of discrete topology on N is
separable and metrizable with a complete metric (i.e. NV is a
Polish space).
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Simple facts to keep in mind

@ N endowed with the product of discrete topology on N is

separable and metrizable with a complete metric (i.e. NV is a
Polish space).

Q If o, — o in NN then there is B € NN such that

O, 00 < B

(here < stands for the natural order for the coordinates)
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apply often to Functional
Analysis;
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Kind of results to be presented

o Structures related to
descriptive set theory that
apply often to Functional
Analysis;

e jHow good are the results?
As good as the need/use of
them for applications.
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A few words about descriptive set theory

Descriptive set theory
From Wikipedia, the free encyclopedia

In mathematical logic, descriptive set theory
is the study of certain classes of
"well-behaved” subsets of the real line and
other Polish spaces. As well as being one of
the primary areas of research in set theory,
it has applications to other areas of
mathematics such as functional analysis,
ergodic theory, the study of operator
algebras and group actions, and
mathematical logic.
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A few words about descriptive set theory

Descriptive set theory
From Wikipedia, the free encyclopedia Contents
In mathematical logic, descriptive set theory * 1Polish spaces .
g 0 = 1.1 Universality properties
is the study of certain classes of
" " . = 2 Borel sets

well-behaved” subsets of the real line and » 2.1 Borel hicrarchy
other Polish spaces. As well as being one of ® 2.2 Regularity properties of Borel sets
the primary areas of research in set theory, * 3 Analytic and coanalytic sets
0 3 0 = 4 Projective sets and Wadge degrees
it has applications to other areas of « 5 Borel cquivalence relations
mathematics such as functional analysis, = 6 Effective descriptive set theory

. h h £ = 7 See also

ergodic theory, the study of operator + 8 References
algebras and group actions, and * 9 External links
mathematical logic.




Proto Idea
00000e®00

The origin of descriptive set theory

Legons sur les Ensembles Analytiques et leurs Applications. By Nicolas Lusin.
With a preface by Henri Lebesgue and a note by Waclaw Sierpinski. Paris,
Gauthier-Villars, 1930. xvi+328 pages.

This volume in the Borel series contains a systematic survey of the present
knowledge of analytic sets, a knowledge which is chiefly due to the researches
of the Russian mathematician who is the author of this book. In fact the only
results which are not due to Lusin or his pupils come from members of the
Polish school of Sierpinski and Mazurkiewicz. The analytic sets of Lusin, which
are a generalization of Borel sets, have been briefly mentioned previously in
several books (Hausdorff’s Mengenlehre, for instance), but this is the first book
devoted entirely to their study.

Lebesgue in his preface humorously points out that the origin of the prob-
lems considered by Lusin lies in an error made by Lebesgue himself in his 1905
memoir on functions representable analytically. Lebesgue stated there that the
projection of a Borel set is always a Borel set. Lusin and his colleague Souslin
constructed an example showing that this statement was false, thus discovering
a new domain of point sets, a domain which includes as a proper part the do-
main of Borel sets. Lebesgue expresses his joy that he was inspired to commit
such a fruitful error.
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A few definitions from descriptive set theory

Cl.~ 'Sooé\m o\)emjno\/\: U ﬂ C”_{“z--V'K ::Z
°<=C“L)V|2.;.,u)
Cni,\r\u MK 52{‘3 L] Mo?b\;\qm\ 6‘7Q<e ><,\
0(:(“5_/\"2) e oo) ‘()K) © 00 ) e lN
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A few definitions from descriptive set theory

CL~ 'Soué\\'w D?GYCLJ(\OVI: U ﬂ Ch_{“z--V'K =1 A
N:Cm,\nz';.'..)
C"LI“LI MK 36{6 W G(‘l(o?b\:\qfcal %che ></\
X=(0g W,y e oay Ny oso ) &N
Expupe:z 1 F X 15 metnzable and Copmzeh
closed khen 25 are clled  Anavtric,
o X=IR_ a“a\rjc\'c"‘ co-analyfic @ Borel

o Cow\'m\sooé 1mqahe Bmeo = ana tic.
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A few definitions from descriptive set theory

b~ Polish = SePowulbe'/ mel(r\atc,ue and Comple{‘eéar Some
L 'COW\palﬂHIE W\e'll'nc-
e Gg -sels of Po\f%‘m one. _Pgl('sL-'. euenl }?o\(q,h 5
o NN Dolish A wrotonels ave .Pc\(f's‘n, ‘ijedFMN.
Co (Anq\fc(c:in ewevoll).- Contmuous \Macl@ of Pcl(slq. space>
o anal @(C 5pace) are $ei)afa10c.'
o Cluss 5+“\°R‘3 under Usaal °D€fCL((0V|5o

[§ D. L. Cohn, Measure theory, Birkhauser, Boston, Mass., 1980.
MR 81k:28001
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A characterization of metrizability

A compact Hausdorff topological space K is metrizable if, and
only, if (C(K),||-|l) is separable.

Results in FA in the “same family”:

O Let (E,|| ||) a Banach space and Bg- the unit dual ball. Then,
(Bg+,w*) metrizable, if and only if, (E,|| ||) is separable.

@ Let (E,|| ||) be a Banach space. Then, (Bg,w)) is metrizable
if, and only if, (E*|| ||) is separable.

© (Smulian, 1940) Let E be a Banach space. The w-compact
subsets of E are w-sequentially compact, i.e., if HC E
w-compact, then each sequence (x,), en H has a
subsequence that w-converges to a point in H.
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Another characterization of metrizability

Exercise. . . from Engelking's book

4.2.B (Sneider [1945]). Show that a compact space X is metrizable
if and only if the diagonal A is a Gy-set in the Cartesian product X x X
(see Problem 3.12.22(e); cf. Problem 4.5.15 and Exercise 5.1.1).
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Another characterization of metrizability

Exercise. . . from Engelking's book

4.2.B (Sneider [1945]). Show that a compact space X is metrizable
if and only if the diagonal A is a Gy-set in the Cartesian product X x X
(see Problem 3.12.22(e); cf. Problem 4.5.15 and Exercise 5.1.I).

Hint. Define a countable family {¥}2, of finite open covers of the

space X such that for every pair @, y of distinct points of X there exists
a natural number ¢ with the property that the closure of no member
of ¥7; contains both # and y. Check that the family of all finite inter-
sections V. nVyn ... NV, where Ve ¥ for ¢« =1,2,...,k, is a base
for X.




Starting Point

[e]e] lelelelele}
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The goal

For a compact space K TFAE:
© K is metrizable;
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[e]e] lelelelele}

We are indeed a bit more greedy

The goal

For a compact space K TFAE:

Q K is metrizable;

@ (C(K),||-||=) is separable;

Q Aisa Gg;

Q@ A =n,G, with G, open and {G,}, a basis of neighb. of A;

Q@ (K xK)\A=U,F,, with {F,} an increasing fundamental
family of compact sets in (K x K)\ A;

QO (KxK)\A=U{Ay: @ c N} with each {Ay} a fundamental
family of compact sets such that Ay C Ag whenever a < j3;

@ (K x K)\A is Lindelof.
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The proof. ..

The goal

For a compact space K TFAE:
© K is metrizable;
Q@ (C(K).[1-[1=) is separable;
e Ais a Gg;
o A =N, Gy with G, open and {Gp}p a basis of neighb. of A;
e (K x K)\ A =UpFp, with {F,} an increasiang fundamental family of compact sets in (K x K)\ A;
e (K x K)\ A =U{Aq : « € NN} with each {Aq} a fundamental family of compact sets such that Ay C Ag
whenever o < B;
@ (KxK)\A s Lindelsf.

@

D=0 =—304+30 0 —p ©
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(K x K)\ A is Lindelof= A is a Gg

It works even for X Hausdorff regular space.

If  # y, there exist two closed neighbourhoods F, and F, of z and y,
respective, such that
F, x F, C (X x X)\A.

The Lindelof property enables to determine a sequence (2, yn), such that

X xX\A=JF., x F,.

n

Therefore A is a Gg-subset of X x X since A =), G,,, where

G = (X X X)\(Fy, x Fy.).
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Definitions

Upper semi-continuous set-valued map (multi-function)

X g oY

@ Y is K-analytic if there is y : NN — 2Y that is upper semi-continuous
compact-valued and such that Y =gy W(@);

NN &< any Polish space P J
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Definitions

Upper semi-continuous set-valued map (multi-function)

X : 9v

Y

Y & any second countable space M (Lindelof X)

@ Y is countably K-determined if there is ¥ ¢ NN and y: ¥ — 2Y that is
upper semi-continuous compact-valued and such that Y = [Jyes W(@).
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Q Ify: X— 2Y that is upper semi-continuous compact-valued, then
K C X is compact = y(K) is compact;
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Q Ify: X— 2Y that is upper semi-continuous compact-valued, then
K C X is compact = y(K) is compact;

@ if yw: X —2Y that is upper semi-continuous compact-valued, then
L C X is Lindeléf = y(L) is Lindeldf;

@ K-analytic = countably K-determined = Lindelof;
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Easy known facts

o
2]
o
o

Ify: X — 2Y that is upper semi-continuous compact-valued, then
K C X is compact = y(K) is compact;

if w:X —2Y that is upper semi-continuous compact-valued, then
L C X is Lindeléf = y(L) is Lindeldf;

K-analytic = countably K-determined = Lindelof;

countably K-determined + metrizable = separable;
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(B) Aq C Ag whenever o < f3;
(C) X =U{Aq:aec N}
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Easy known facts

Q Ify: X— 2Y that is upper semi-continuous compact-valued, then
K C X is compact = y(K) is compact;

@ if yw: X —2Y that is upper semi-continuous compact-valued, then
L C X is Lindeléf = y(L) is Lindeldf;

© K-analytic = countably K-determined = Lindelof;
@ countably K-determined + metrizable = separable;
@ if X is K-analytic (v : NN = 2X) and Ay := y({B : B < a}) then:
(A) each Aq is compact;
(B) Aq C Ag whenever o < f3;
(C) X =U{Aq:aec N}
@ ditto, if X is countably K-determined, there is a second countable space
M and a family {Ak : K € 7# (M)} such that:
(A) each Ak is compact;
(B) Ak C Ar whenever K C F;
(C) X =U{Ax : K € #(M)}.
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To keep in mind

Proposition

Let X be a metric space and y : X — 2" multi-valued . TFAE:
Q vy is usco;

@ v is compact valued + For every sequence x, — x in X if
¥Yn € W(xn), n € N then (y,)n has a cluster point y € y(x).
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Domination by Polish Spaces

Definition

A topological space X is dominated by a Polish space, if there is a
Polish space P and a family {Ax : K € 7#(P)} C X such that:
(A) each Ak is compact;

(B) Ak C Ar whenever K C F;

(C) X=U{Ak: K e x(P)}.
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Domination by Polish Spaces

Definition

A topological space X is dominated by a Polish space, if there is a
Polish space P and a family {Ax : K € 7#(P)} C X such that:

(A) each Ak is compact;
(B) Ak C Ar whenever K C F;
(C) X=U{Ak : Kex(P)}.

Proposition, Orihuela-Tkachuk-C, 2011
For a topological space X the TFAE:

@ X is dominated by a Polish space;

@ There is a family {Aq : @ € NV} of subsets of X with:
(A) each Ay is compact;
(B) Ay C Ag whenever a < 3;
(C) X=U{Aq: a N}
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Two nice previous cases

Anuanls of Matk

119 (1579, &07-4238

Fapaces de Banach faiblement
JC-analytiques

Par MICKEL TALAGRAND

PROPOSITION 6.18, Soit K un espace compact. Les assertions sutvantes
sont éguivalentes:

&), K est de type &,

b). Il exisic une application croissante 0 -+ A, de £ (muni de ordre
produit) dans Pensemble des compacts de €, (K) telle que L,y A, sépare les
points de K.

Démonstration. Nous savons déja que a) implique b) l'application
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Two nice previous cases

Valdivia, J. don Math. Soc.

QUASI-LB-SPACES

MANUEL VALDIVIA

We shall see later that properties (1) and (2) are important in order to obtain some
results on the closed graph theorem. This is the reason for introducing the following
definitions. A quasi-LB-representation in a topological vector space F is a family
{Ay: ae NN} of Banach discs satisfying the following conditions :

1. J{4y: aeNN} = F;

2. if o, fe NN and a < B then A, < Ap.
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Domination by Polish implies (many times) K-analyticity

@ Let X be a topological space {Aq: a € NN} of subsets of X with:
(A) each Ay is compact;
(B) Ay C Ag whenever a < B;
(C) X =U{Ay: e N}
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Domination by Polish implies (many times) K-analyticity

@ Let X be a topological space {Aq : & € NN} of subsets of X with:
(A) each Aq is compact;
(B) Aq C Ag whenever o < f3;
(C) X =U{Ax: @ e NV},

@ Given a = (n,) € NY and m € N, define

Om:=(n1,n,...,Nm).

Proposition, B. C., 1987

Given X and {Aq : @ € NV} as above, if we define ¢ : NN — 2X given by

o(a):= () U{Ap : Bl = ali}
k=1

then:

@ each ¢(a) is countably compact (even more, all cluster points of any
sequence in @(@) remains in @(a)).

@ if ¢(a) is compact then a@ — ¢(cr) gives K-analytic structure to X.
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Domination by Polish implies (many times) K-analyticity

@ Let X be a topological space {Aq : & € NN} of subsets of X with:
(A) each Aq is compact;
(B) Aq C Ag whenever o < f3;
(C) X =U{Ax: @ e NV},
@ Given a = (n,) € NY and m € N, define
Om:=(n1,n,...,Nm).

Proposition, B. C., 1987

Given X and {Aq : @ € NV} as above, if we define ¢ : NN — 2X given by

o(a):= () U{Ap : Blx = alx}
k=1

then:
@ each ¢(a) is countably compact (even more, all cluster points of any
sequence in @(@) remains in @(a)).
@ if ¢(a) is compact then a@ — ¢(cr) gives K-analytic structure to X.

X has K-analytic structure if countably compact subsets=compact subsets. J
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The proof

The claim proved is the second part of (2) below:

Keep in mind Proposition

Let X be a metric space and y : X — 2" multi-valued . TFAE:

Q v is usco;

@ vy is compact valued + For every sequence x, — x in X if
¥n € Y(xn), n € N then (yn)n has a cluster point y € y(x).
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Keep in mind Proposition

Let X be a metric space and y : X — 2¥ multi-valued . TFAE:

Q v is usco;
@ vy is compact valued + For every sequence x, — x in X if
¥n € Y(xn), n € N then (yn)n has a cluster point y € y(x).

SO we have finally proved

Proposition, B. C., 1987

Given X and {Aq : @ € NV} as above, if we define @: NN — 2X given by
o) = () U{Ap : Blk = @Ik}
k=1
then:
@ cach ¢(a) is countably compact (even more, all cluster points of any sequence in @(c) remains in @(c)).

@ if p() is compact then a — ¢(a) gives K-analytic structure to X.
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The proof

The claim proved is the second part of (2) below:

Keep in mind Proposition

Let X be a metric space and y : X — 2¥ multi-valued . TFAE:

Q v is usco;
@ vy is compact valued + For every sequence x, — x in X if
¥n € Y(xn), n € N then (yn)n has a cluster point y € y(x).

SO we have finally proved

Proposition, B. C., 1987

Given X and {Aq : @ € NV} as above, if we define @: NN — 2X given by
o) = () U{Ap : Blk = @Ik}
k=1
then:
@ cach ¢(a) is countably compact (even more, all cluster points of any sequence in @(c) remains in @(c)).

@ if p() is compact then a — ¢(a) gives K-analytic structure to X.

X has K-analytic structure if countably compact subsets=compact subsets. )
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Talagrand's solution to a conjecture Corson

, Talagrand 1975
Every WCG Banach space E is weakly Lindelof.

Proof .-
@ Fix W C E absolutely convex w-compact with E = spanW/.

@ Given a = (ny) € NV,

Ag = (n1W+BE**)ﬁ(n2W+%BE*¥)ﬂ-~-ﬂ(n1W+%BEw)ﬂ...

@ Proposition = (E,w) K-analytic = (E,w) Lindeldf. &



Domination by Polish&Appl.
0®00000000000

Fréchet-Montel spaces

Theorem, Dieudonné 1954

Every Fréchet-Montel space E is separable (in particular 5#(Q) is separable).

Proof.-

@ Fix Vi D Vo D--- D V,... a basis of closed neighborhoods of 0.
@ Given o = (n;) e NN,
Aa = m ny Vk.
k=1
@ {Ay:ac NV} fundamental family of bdd closed sets=compact;

@ Proposition = E K-analytic +metrizable = E Lindel6f 4+ metrizable =
E separable. &
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2'(Q) is analytic

00@0000000000

Theorem, 2'(2) is analytic.

The strong dual of every inductive limit of Fréchet-Montel spaces is analytic.
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Theorem, 2'(2) is analytic.

The strong dual of every inductive limit of Fréchet-Montel spaces is analytic.

E — Ey — = E, — — E
U} U2 U;
U U U
U
o Y : ()
a=m)x (03] U U
v (v2) ;
U

Uy = aco(Ule Uﬁk)

@ UgClUnysia<PB; % :={Ux: a € NN} neigh. basis of 0 en E.
@ Ay := Uy compact & Aq C Ag, o < fB;

@ E'=U{Ay: €N} and E’ sub-metrizable = E’ K-analytic
sub-metrizable = E’ analytic.
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Theorem, 2'(2) is analytic.

The strong dual of every inductive limit of Fréchet-Montel spaces is analytic.

E, = E, = = E = — E
U} U2 U;
U U U
U
u : )
a=(ue (U, u U
Y (v2) :
U

Schwartz, 1964

Any Borel linear map from a separable Banach space into 2/(Q) is continuous.
In particular, the Closed Graph Theorem holds for linear maps

T:2'(Q) - 7(9).
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Metrizability of compact sets (1)

K compact space & {Ay : a € NV} subsets of (K x K)\ A. We
write:

(A) each Ay is compact;

(B) Aq C Ag whenever o < j3;

(C) (Kx K)\A=U{Ay: ac N} )

Theorem (Orihuela, B.C. 1987)
(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Ay such that
F CAq.
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Metrizability of compact sets (1)

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Aq such that F C Ag.




K compact space & {Aq : o € NV} subsets of (K x K)\ A. We write:
(A) each Aq is compact;
G (B) AqcC Ap whenever a < ;

(€) (KxK)\A=U{Ag:aeN}.

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Aq such that F C Aq.




K compact space & {Aq : o € NV} subsets of (K x K)\ A. We write:
(A) each Aq is compact;
G (B) AqcC Ap whenever a < ;

(€) (KxK)\A=U{Ag:aeN}.

Theorem (Orihuela, 987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Aq such that F C Aq.

Proof.-
@ Given a € NN, define Ny := (K x K)\ Aq.
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Proof .-
@ Given a € NN, define Ny := (K x K)\ Aq.
@ Ny is a basis of open neighborhoods of A;



K compact space & {Aq : o € NV} subsets of (K x K)\ A. We write:
(A) each Aq is compact;

G (B) AqcC Ap whenever a < ;

(€) (KxK)\A=U{Ag:aeN}.
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Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Aq such that F C Aq.

Proof .-
@ Given a € NN, define Ny := (K x K)\ Aq.
@ Ny is a basis of open neighborhoods of A;

©Q By :={fecC(K):|flle<ni|f(x)—Ff(y) < %, whenever (x,y) € Ngm};
for o)™ := (N, Npt1,...), mEN.



K compact space & {Aq : o € NV} subsets of (K x K)\ A. We write:
(A) each Aq is compact;
G (B) AqcC Ap whenever a < ;

(€) (KxK)\A=U{Ag:aeN}. |

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Aq such that F C Aq.

Proof .-
@ Given a € NN, define Ny := (K x K)\ Aq.
@ Ny is a basis of open neighborhoods of A;
© Bu:={feC(K):|flle < ni,|f(x)—Ff(y) < %, whenever (x,y) € Nym};
for o)™ := (N, Npt1,...), mEN.
o
Ascoli

(A) each By is || ||l-bdd & closed & equicontinuous "= By, is
|| ||e-compact;



K compact space & {Aq : o € NV} subsets of (K x K)\ A. We write:
(A) each Aq is compact;
G (B) AqcC Ap whenever a < ;

(©) (KxK)\A=U{Aq:aeN}

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Aq such that F C Ag.

Proof .-
@ Given a € NN, define Ny := (K x K)\ Aq.
@ Ny is a basis of open neighborhoods of A;
© By :={f € C(K):||fllo < n1,|f(x) = f(y)| < &, whenever (x,y) € Nym};
for o)™ := (N, Npt1,...), mEN.
o

(A) each By is || ||-bdd & closed & equicontinuous =l By s
|| ||le-compact;
(B) By C Bg whenever o < B;



K compact space & {Aq : o € NV} subsets of (K x K)\ A. We write:
(A) each Aq is compact;
G (B) AqcC Aﬁ whenever a < ;

(C) (KxK)\A=U{Aq:aecN}

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Aq such that F C Ag.

Proof .-
@ Given a € NN, define Ny := (K x K)\ Aq.
@ Ny is a basis of open neighborhoods of A;
© By :={f € C(K):||fllo < n1,|f(x) = f(y)| < &, whenever (x,y) € Nym};
for o)™ := (N, Npt1,...), mEN.
o

(A) each By is || ||-bdd & closed & equicontinuous =l By s
|| ||le-compact;

(B) By C Bg whenever a < 3;

(C) C(K)={By:oecN"}



Theorem (Orihuela, B.C. 1987)

K compact space & {Aq : o € NV} subsets of (K x K)\ A. We write:
(A) each Aq is compact;

(B) AaCAI} whenever a < ;
(€) (KxK)\A=UfAq:aeN}.

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Aq such that F C Ag.

Proof .-
@ Given a € NN, define Ny := (K x K)\ Aq.
@ Ny is a basis of open neighborhoods of A;

© Bu:={feC(K):|flle < ni,|f(x)—Ff(y) < %, whenever (x,y) € Nym};
for o)™ := (N, Npt1,...), mEN.

o

(A) each By is || ||-bdd & closed & equicontinuous =l By s
|| ||le-compact;

(B) By C Bg whenever a < 3;

(C) C(K)=U{By:acN"}.

Q (C(K),|| |l) is K-analytic +metrizable = E Lindelof + metrizable = E
separable = K is metrizable. &



Domination by Polish&Appl.
0000080000000

Metrizability of compact sets (I): A different formulation

We didn't stated our result below as presented.
K compact space & {Agy : @ € NN} subsets of (K x K)\ A. We write:
(A) each Ay is compact;
(B) Aq C Ag whenever a < f3;
(C) (KxK)\A=U{Ax:aec N}

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Ag such that F C Ag.

v



Domination by Polish&Appl.
0000080000000

Metrizability of compact sets (I): A different formulation

We didn't stated our result below as presented.
K compact space & {Agy : @ € NN} subsets of (K x K)\ A. We write:
(A) each Ay is compact;
(B) Aq C Ag whenever a < f3;
(C) (KxK)\A=U{Ax:aec N}

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Ag such that F C Ag.

Theorem (Orihuela, B.C. 1987)

(K,41) a compact uniform space with a basis for the uniformity
By = {Ng : @ € NN} satisfying:

Ng C Ng si o < B whenever a,3 € NN,

Then K is metrizable.




Domination by Polish&Appl.
000000®000000

The original paper

Math. Z. 195, 365-381 (1987) Mathe.matIS_Che
Zeitschrift

© Springer-Verlag 1987

On Compactness in Locally Convex Spaces

B. Cascales and J. Orihuela

Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Murcia,
E-30.001-Murcia-Spain

1. Introduction and Terminology

The purpose of this paper is to show that the behaviour of compact subsets in
many of the locally convex spaces that usually appear in Functional Analysis
is as good as the corresponding behaviour of compact subsets in Banach
spaces. Our results can be intuitively formulated in the following terms: Deal-
ing with metrizable spaces or their strong duals, and carrying out any of the
usual operations of countable type with them, we ever obtain spaces with their
precompact subsets metrizable, and they even give good performance for the weak
topology, indeed they are weakly angelic, [14], and their weakly compact subsets
are metrizable if and only if they are separable.
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A nice applications

Theorem 16. If E[T] =£12En[‘7zn] is an inductive limit of an increasing sequence

of subspaces E,[T,] belonging to the class ®, then the following statements are
equivalent :

(i) E[T] is sequentially retractive.

(i) E[T] is sequentially compact-regular.

(ii)) E[] is compact-regular.

(iv) E[Z] is precompactly retractive.
If every E,[X,] is complete, the former conditions are also equivalent to the
Jfollowing :

(v) For every precompact subset A of E[X] there is a positive integer n such
that A is contained in E,[X,] and it is precompact in this space.
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The techniques seems to be useful yet

The results have been used by many authors over the years: Bonet,
Dierolf, Maestre, Bistrom, Robertson, Valdivia, Wengeroth,
Lindstrom, Bierstedt, etc.

AMERICAN MATHEMATICAL SOCIETY

- ®
MathSciNet ..o revens on e ves

MR2666299 (Review) Ferrando, J. C. ; Kakol, Jerzy ; Lépez Pellicer, M. ; Sliwa, W.
theorem.
Math. Nachr. 283 (2010), no. 5, 704--711.

MR2596470 (2011b:46006) Albanese, Angela A. ; Bonet, José ; Ricker, Werner J. Grot
Positivity 14 (2010), no. 1, 145--164.

MR2541044 (2010e:46005) Kakol, J. ; Lépez Pellicer, M. ; Todd, A. R. A topological
bounded tightness.
Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 2, 313--317.

MR2346899 (2009g:46007) Drewnowski, Lech . Resolutions of topological linear spaces a
maps .
J. Math. Anal. Appl. 335 (2007), no. 2, 1177--1194.

MR2333802 (2008h:54018) Tkachuk, V. V. A selection of recent results and problems in
Topology Appl. 154 (2007), no. 12, 2465--2493.

MR2150789 (2006e:54007) Tkachuk, V. V. A space C,(X) is dominated by irrationals if
K -analytic.
Acta Math. Hungar. 107 (2005), no. 4, 253--265.
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Applications

INDEX

5 Strongly web-compact spaces and Closed Graph Theorem 167
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3 A Closed Graph Theorem for strongly web-compact spaces . . 170

6 Akly analytic spaces 175
Something about analytic spaces . 75
Christensen theorem . . 182
6.3 Subspaces of analytic spaces . 189
6.4 Trans-scparable topological spaces . 192
65 Weakly analytic spaces need not be analytic 200
6.6 When a weakly analytic locally convex space is analytic? 204
6.7 Weakly compact density condition 206
6.8 More examples of non-separable weakly analytic tvs 215
7 K-analytic Baire spaces Descriptive Topology in Selected
7.1 Baire tvs with a bounded resolution Topics of Functional Analysis
7.2 Continuous maps on spaces with resolutions
8 A three-space property for analytic spaces e
81 Corson’s example Decernber 29, 2009
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9.2 Christensen and Calbrix theorem for C,(X) 249
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11.2 Cascales-Orihuela theorem and applications 208
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Applications
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Tkachuk's views about the metrizability result

A selection of recent results and problems in C,-theory ®

W.V. Tkachuk
Depariaments de Matematicns, Uebversidad Awdaoma Melropolions, Av Soa Rafsel Afiico, 185, Ijgpaiape, A B 55533,
CP 09348, Mexica, DF, Mexico
Rezcetved 19 December 2006; screpted 16 March 2007

e wrete 20 Zeqre lider

Cascales and Orihuela introduced a stronger notion in [29]; say that a space X is strongly dominated by the ir-
rationals if it has an ©"-ordered compact cover = {Kf: f € "] and, for any compact subspace K C X there is
such that £ C Ky the family allows” all compact subsets of X To show that strong domination
irrationals is important for topoloj uffices to look at the follo

Theorem 2.8, (See Christensen [31].) A second countable space is strongly dominated by the irrationals if and only

if it is completely metrizable.

Theorem 2.9, (See Cascales and Orihuela [30].) A compact space K is metrizable if and only if the space (K x K)\A
is strongly dominated by the irrationals. Here A ={(x, x): x € K} is the diagonal of the space K.

An interesting thing about Theorem 2.9 is that Cascales and Orihuela proved this purely topological metrization
result dealing with function spaces and nowadays no direct topological proof is known.
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We came back 25 years late

Topology and its Applications 158 (2011) 204-214

Contents lists available at ScienceDirect -
. . . Appichion;
Topology and its Applications
www.elsevier.com/locate/topol N

Domination by second countable spaces and Lindelof X -property

B. Cascales®1-2, J. Orihuela®!2, V.V. Tkachuk P-*-3-4

2 Departamento de Matemticas, Facultad de Ciencias, Universidad de Murcia, 30.100, Espinardo, Murcia, Spain
b Departamento de Matemticas, Universidad Auténoma Metropolitana, Av. San Rafael Atlixco, 186, Col. Vicentina, Iztapalapa, C.P. 09340, México D.F, Mexico

ARTICLE INFO

ABSTRACT

Article history:
Received 19 August 2010
Accepted 28 October 2010

Keywords:

(Strong) domination by irrationals
(Strong) domination by a second countable
space

Diagonal

Metrization

Orderings by irrationals

Orderings by a second countable space
Compact cover

Function spaces

Cosmic spaces

Given a space M, a family of sets A of a space X is ordered by M if A= {Ak: K is a
compact subset of M} and K C L implies Ax C A;. We study the class M of spaces which
have compact covers ordered by a second countable space. We prove that a space Cp(X)
belongs to M if and only if it is a Lindelof X-space. Under MA(w;), if X is compact and
(X x X)\A has a compact cover ordered by a Polish space then X is metrizable; here
A ={(x,x): xe X} is the diagonal of the space X. Besides, if X is a compact space of
countable tightness and X2\ A belongs to M then X is metrizable in ZFC.
We also consider the class M* of spaces X which have a compact cover F ordered by
a second countable space with the additional property that, for every compact set P C X
there exists F € F with P C F. It is a ZFC result that if X is a compact space and (X x X)\ A
belongs to M* then X is metrizable. We also establish that, under CH, if X is compact and
Cp(X) belongs to M* then X is countable.

© 2010 Elsevier B.V. All rights reserved.
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Metrizability of compact sets (II)

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Aq C Ag whenever a < f3;
(C) (KxK)\A=U{Ay: a NN}

Theorem (Orihuela, Tkachuk, B.C. 2011)
(A) + (B) + (C) + MA(w1) = K is metrizable.
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Metrizability of compact sets (II)

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Aq C Ag whenever a < f3;
(C) (KxK)\A=U{Ay: a NN}

Theorem (Orihuela, Tkachuk, B.C. 2011)
(A) + (B) + (C) + MA(w1) = K is metrizable.

Proof.-

Q (A) + (B) + (C) + MA(w;) = K has small diagonal, i.e., for any

uncountable set A C (K x K)\ A there exists an uncountable B C A such
that BNA =0.
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Metrizability of compact sets (II)

2.12. Theorem. Assume MA(w ) and suppose that X is a compact space such that X?\ A is P-dominated. Then X has a small diagonal
and hence t(X) = w.

Proof. Suppose that A = {zy: @ < @1} C X*\A and « # f implies zy # zg. Fix a P-directed cover {Kj: p € P} of compact
subsets of X2\ A. Take pg € P such that z, € Kp, for any o < ;.

It follows from MA(w;) that there exists p € P such that py <* p for any & < w;. The set P = J{K;: q € P and q =* p}
is o -compact and A C P. Consequently, there is q € PP for which Kq N A is uncountable; therefore the set K; N A witnesses
the small diagonal property of X. Since no space with a small diagonal can have a convergent w-sequence, it follows from
[16, Theorem 1.2] that X has no free sequences of length wy, ie., t(X)<w. O

Theorem (Orihuela, Tkachuk, B.C. 2011)

(A) + (B) + (C) + MA(w1) = K is metrizable.

Proof.-

Q@ (A) + (B) + (C) + MA(m1) = K has small diagonal, i.e., for any
uncountable set A C (K x K)\ A there exists an uncountable B C A such
that BNA =0.

@ K has small diagonal = K has countable tightness = K x K has
countable tightness;
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Metrizability of compact sets (II)

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Aq C Ag whenever a < f3;
(C) (KxK)\A=U{Ay: a NN}

Theorem (Orihuela, Tkachuk, B.C. 2011)
(A) + (B) + (C) + MA(w1) = K is metrizable.

Proof.-

Q@ (A) + (B) + (C) + MA(m1) = K has small diagonal, i.e., for any
uncountable set A C (K x K)\ A there exists an uncountable B C A such
that BNA =0.

@ K has small diagonal = K has countable tightness = K x K has
countable tightness;

Q (KxK)\A is K-analytic
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Metrizability of compact sets (II)

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:

A = h /A
Proposition, B. C., 1987

Given X and {Aq : @ € NV} as above, if we define y: NN — 2(KXK\A given by

o

y(a) = ﬂ U{Aﬁ :Blm=alm}
i

m=
then:

@ cach y(a) is countably compact (even more, all cluster points of any sequence in y(a) remains in y(a)).

@ if y(a) is compact then o — y(a) gives K-analytic structure to (K x K)\ A.

Proof .-

Q (A) + (B) + (C) + MA(w;) = K has small diagonal, i.e., for any
uncountable set A C (K x K)\ A there exists an uncountable B C A such
that BNA =0.

@ K has small diagonal = K has countable tightness = K x K has
countable tightness;

Q (KxK)\A is K-analytic
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M 4 - w(a) C y(a), (closure in K x K)
@ take x € y(a);
@ there is AC y(«) countable with x € A;
@ isxcA= xey(a)
@ otherwise, x € (A\ A) = x is cluster point of a sequence in y(a) = x € y(a).

Proposition, B. C., 1987 '

Given X and {Aq : @ € NV} as above, if we define y: NN — 2(KXK\A given by

y(a) = ﬂ U{Aﬁ :Blm=alm}
m=1

then:

@ cach y(a) is countably compact (even more, all cluster points of any sequence in y(a) remains in y(a)).

@ if y(a) is compact then o — y(a) gives K-analytic structure to (K x K)\ A.

Proof.-

Q (A) + (B) + (C) + MA(w;) = K has small diagonal, i.e., for any
uncountable set A C (K x K)\ A there exists an uncountable B C A such
that BNA =0.

@ K has small diagonal = K has countable tightness = K x K has
countable tightness;

Q (KxK)\A is K-analytic
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Metrizability of compact sets (II)

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Aq C Ag whenever a < f3;
(C) (KxK)\A=U{Ay: a NN}

Theorem (Orihuela, Tkachuk, B.C. 2011)
(A) + (B) + (C) + MA(w1) = K is metrizable.

Proof.-

Q@ (A) + (B) + (C) + MA(m1) = K has small diagonal, i.e., for any
uncountable set A C (K x K)\ A there exists an uncountable B C A such
that BNA =0.

@ K has small diagonal = K has countable tightness = K x K has
countable tightness;

©Q (KxK)\Ais K-analytic = (K x K)\ A is Lindeléf = A'is G = K is
metrizable. &
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Domination by Second Countable Spaces

Definition
A topological space X is dominated by a second countable space, if there is a
second countable space M and a family {Ax : K € 72 (M)} C X such that:

(A) each Ak is compact;
(B) Ak C Ar whenever K C F;
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Domination by Second Countable Spaces

Definition
A topological space X is dominated by a second countable space, if there is a
second countable space M and a family {Ax : K € 72 (M)} C X such that:

(A) each Ak is compact;
(B) Ak C Ar whenever K C F;

Theorem (Orihuela, Tkachuk, B.C. 2011)

For a topological space TFAE:

@ X is countably K-determined;

@ X is Dieudonné complete and dominated by a second countable space.
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Domination by Second Countable Spaces

Definition
A topological space X is dominated by a second countable space, if there is a
second countable space M and a family {Ax : K € 72 (M)} C X such that:

(A) each Ak is compact;
(B) Ak C Ar whenever K C F;

Theorem (Orihuela, Tkachuk, B.C. 2011)
For a topological space TFAE:

@ X is countably K-determined;

@ X is Dieudonné complete and dominated by a second countable space.

The class of spaces dominated by a second countable space enjoy the usual
stability properties we might expect.
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Techniques

Generation of usco maps, Orihuela and B. C. 1991

Let T be a first-countable, X a topological space and let ¢ : T — 2X be a
set-valued map satisfying the property

U ¢(tn) is relatively compact for each convergent sequence (t;), in T. (1)
neN

If for each x in X we define
C(t) :={x € X : thereis t, — t in T, for every n € N there is
Xn € @(tp) and x is cluster point of (xp)n}.

Then:

@ each C(t) is countably compact.

@ if y(t):= C(t) is compact then t — y(t) is usco y: T — # (X).
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Techniques

Generation of usco maps, Orihuela and B. C. 1991

Let T be a first-countable, X a topological space and let ¢ : T — 2X be a
set-valued map satisfying the property

U ¢(tn) is relatively compact for each convergent sequence (t;), in T. (1)
neN
If X is dominated by a second countable space, if there is a second countable space M and a family
{Ak : K € # (M)} such that:
(A) each Ak is compact;
(B) Ak C Ar whenever K C F;
(©) X=U{Ax:KeX (M)

@ each C(t) is countably compact.

@ if y(t):= C(t) is compact then t — y(t) is usco y: T — # (X).
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Techniques

Generation of usco maps, Orihuela and B. C. 1991

Let T be a first-countable, X a topological space and let ¢ : T — 2X be a
set-valued map satisfying the property

U ¢(tn) is relatively compact for each convergent sequence (t;), in T. (1)
neN
If X is dominated by a second countable space, if there is a second countable space M and a family
{Ak : K € # (M)} such that:
(A) each Ak is compact;
(B) Ak C Ar whenever K C F;
(€©) X=U{Ak:Ke (M)}
We take: T :=(#(M),h), ¢(K):= Ak and we can generate the USCO y in many cases.

@ each C(t) is countably compact.

@ if y(t):= C(t) is compact then t — y(t) is usco y: T — # (X).
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Two noticeable results

Theorem (Orihuela, Tkachuk, B.C. 2011)

Cp(X) is countably K-determined iff is dominated by a second countable space.
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Two noticeable results

Theorem (Orihuela, Tkachuk, B.C. 2011)

Cp(X) is countably K-determined iff is dominated by a second countable space.

Theorem (Orihuela, Tkachuk, B.C. 2011)

Let K be a compact space. If there is a second countable space M and a
family {Ar : F € (M)} C (K x K)\ A such that:

(A) each Af is compact;
(B) Ar C A, whenever F C L;
(C) (KxK)\A=U{AF:Fex (M)}

and

(D) every compact subset of (K x K)\ A is contained in some Af.

Then K is metrizable.
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Ready to finish... | kept the promise

We know have to solve the exercises and a bit more that become a

For a compact space K TFAE: a. ..
Q@ K is metrizable;

@ (C(K),||-|l) is separable;

Q Aisa Gg;

Q@ A =nN,G, with G, open and {G,}, a basis of neighb. of A;

Q@ (K xK)\A=U,F,, with {F,} an increasing fundamental
family of compact sets in (K x K)\ A;

QO (K xK)\A=U{Aq: acN"} with each {Ay} a fundamental
family of compact sets such that A, C Ag whenever o < j3;

@ (K xK)\ A is Lindeldf.
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Open questions

K compact space &
{Ag:a e NV} C (K x K)\ A.
We write:
(A) each Ay is compact;
(B) Aq C Ag whenever o < f3;
() (KxK)\A=U{Aa:

a € NVL

v

Open question
(A) + (B) + (C) Lk is metrizable.
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Open questions

K compact space &
{Aq: € NV} C (K x K)\ A.
.-here! We write:
(A) each Ay is compact;
(B) Aq C Ag whenever a < f3;
(C) (KxK)\A=U{Aq:
o € NV}

More problems

Domin:

Open question

(A) + (B) + (C) Lk is metrizable.
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Open questions

K compact space &
{Ag:a e NV} C (K x K)\ A.
We write:
(A) each Ay is compact;
(B) Aq C Ag whenever o < f3;
(€) (KxK)\A=U{Aq:

a € NVL

Bewarel!!
o This lecture and the paper DO ONLY
SHARE the results.

None of the proofs presented here are in
the paper.

Open question

(A) + (B) + (C) & K is metrizable.
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Further developments and related material at:

http://webs.um.es/beca

j Bernardo Cascales

Research Projects Dissertations and 5t}

Investigacion/Research

Menu The material you will find here is connected with my research in Topology, Measure Theory and Functional Anz
Home Ph.D. dissertations (Advisor)
Docencia ® Elugenia Saorin, 2008. On inn: jes. From the Steiner polynomial to Poincaré inequality
Papers ® Carlos Angosto, 2007. Distance to spaces of functions -Spanish. Introduction in English.
® José Rodriguez, 2006. (European Degree). |ntear ans s -Spanish. Introduction in Englis
Lectures ® Antonio Avilés, 2006. (European Degree). No tness and renormings -S
® Naria Mufioz, 2004, Index of K-dete
Research ® Guillermo 1998

Dissertations & Stdts

LaTeX Master thesis (Advisor)

Sergio Medina, 2009. Teoremas d a multifunciones v aplica
® José Jesis Rosell, 2007. £l teorema d Spanish.
® Carlos Angosto, 2005. Distancia a espacios de funciones continuas y compacidad débil.
® Pedro José Herrero, 2001. EL Teorema de Hahn-Banach.
.
.

Maria Mufioz, 1999. El teorema de la grafica cerrada.
Guillermo Manjabacas, 1994, Compacidad en topologias débiles asociadas a un conjunto normante.

Current Ph.D. students.
® David Guerrero.
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