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@ First 2 lecures: Upper and lower semi-continuity for multi-functions:

e generation of K-analytic structures, applications to functional
analysis;

e Michael's selection theorem; distances to spaces of continuous
functions; quantitative perspective of compactness.

@ 3rd lecture: Measurability for multi-functions

o Kuratowski-Ryll-Narzesdky selection theorem; extension to non
separable Banach spaces.

e integration of multifunction
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°

Notation

@ LM,...X,Y,... topological spaces; E,F Banach or sometimes Ics;
@ K compact Hausdorff space;

@ 2X subsets; .# (X) family of compact sets; if £ Banach then wk(E)
weakly compact sets and cwk(E) convex weakly compact sets;

@ C(X) continuous functions; Cp(X) continuous functions endowed with
the pointwise convergence topology Tp;
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Notation

@ L,M,...X,Y,... topological spaces; E,F Banach or sometimes Ics;

@ K compact Hausdorff space;
@ 2X subsets; .#(X) family of compact sets; if £ Banach then wk(E)

e 6 o o

weakly compact sets and cwk(E) convex weakly compact sets;

C(X) continuous functions; C,(X) continuous functions endowed with
the pointwise convergence topology 7p;

Q C C open set; (R2) space of holomorphic functions with the topology
of uniform convergence on compact sets;

Q C R" open set; 2'(Q2) space of distributions;
[rgEn inductive limit of a sequence of Fréchet spaces.
(92,%, 1) complete probability space;

¥+ measurable sets of positive measure; for A€ ¥, ZX measurable
subsets of A of positive measure;

measurability for scalar function f : Q — R standard; measurability for
F:Q — 2F will be defined;



Stay focused... three samples

First sample... our goal is to understand

Let K be a compact space and A its diagonal. TFAE:
@ K is metrizable;

@ (C(K),||-|l) is separable;

Q Aisa Gg;

Q@ A =nN,G, with G, open and {G,}, a basis of neighb. of A;

O (K x K)\A=UpF,, with {F,} an increasing fundamental
family of compact sets in (K x K)\ A;

QO (K xK)\A=U{Aq: acN"} with each {Ay} a fundamental
family of compact sets such that A, C Ag whenever o < j3;

@ (K x K)\A is Lindelof.

and apply it to Functional Analysis.



Stay focused... three samples

Second sample... our goal is to understand

how to use Michael’s selection theorem to prove that if

S(f2) = {(x.y) 1y = o)}

folos.

h cont.

fiu s,

U(f) = {(=.9) 1y < fil0)}
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Stay focused... three samples

Second sample... our goal is to understand

how to use Michael’s selection theorem to prove that if

S(f2) = {(z,y) 1y > fo(2)}

folos.

h cont.

fiu s,

U(fr) ={(z,9) 1y < fila)}

and apply it to define measures of non compactness in spaces of
continuous functions and Banach spaces.



Stay focused... three samples

Third sample... our goal is to understand how the notion

Definition

F :Q — 2F satisfies

property (P) if for each € >0
and each A€ X7 there exist
Be X} and D C E with
diam(D) < € such that

F(t)ND # 0 for every t € B.

helps to produce measurable selectors beyond the separable case
and to extend integration of multi-function to this general setting.



Stay focused... three samples

Multi-functions. Examples

Definition

A multi-function (set-valued map, multi-map, etc.) is a map y
from a set X into the family of subsets 2Y of another set Y, i.e.,
for each x € X the image y(x) is a subset of Y.

Examples:
@ the map log : C\ {0} — C that sends every z € C\ {0} to the
set of its logarithms;
e if g,G:[0,1] — R are functions with g(x) < G(x) then
y(x) :=[g(x), G(x)] is a multifunction;



Stay focused... three samples

Multi-functions. Examples

Examples:

e if f: Y — X is onto, then y(x) :=f}(x), x€ X is a
multi-function;

o f = {xeK:|f(x)|=|fll«} is multi-function defined in C(K);
o if E is a Banach space J: Bg — 2B¢ given by

J(x):={x" € Bg : ||x|| = x*(x)} (duality map)

is a multi-function;



Stay focused... three samples

Multi-functions. Examples

... more examples:

o if E is a Banach space and F C E is closed proximinal, then
x—={yeF:|x—y|=d(x,F)} is a multi-function (metric
projection);

o If E is a Fréchet space, and Vi D Vo D---DV,D---isa
basis of neighb. of 0 then y: NN — 2F given by

l[/(OC) = ﬂ e Vi, with a = (nk)k
k=1

is a multi-function with y(NY) = E, y(a) C y(B) if a < B in
NN and {y(«): o« € NV} fundamental family of bounded sets.



Stay focused... three samples

Multi-functions. Selectors

Definition

Given a multi-function

v: X —2Y aselector is a
single-valued map f : X — Y
! such that f(x) € y(x) for

0 : g each x € X.

(Jayne-Rogers) E is Asplund if, and only if, the duality map has a Baire-1
selector;

(Michael) if w: M — 2E (E Banach, M metric) is lower semi-continuous, takes
convex closed values, then ¥ has a continuos selector;

(Kuratowski-Ryll Nardzewski, 1965) Let F : Q — 2F be a multi-function with
closed non empty values of E. If E is separable and F satisfies that

{teQ:F(t)NO #0} € X for each open set O C E. (E)

Then F admits a u-measurable selector f.



Stay focused... three samples

The need of good selectors...integration of multi-functions

There are several possibilities to define the integral
of F:

@ to take a reasonable embedding j from
cwk(E) into the Banach space Y (= lw(BEg+))
and then study the integrability of jo F;

F : Q — cwk(E) —convex w-compact
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The need of good selectors...integration of multi-functions

There are several possibilities to define the integral
of F:

@ to take a reasonable embedding j from
cwk(E) into the Banach space Y (= lw(BEg+))
and then study the integrability of jo F;

F : Q — cwk(E) —convex w-compact

@ to take all integrable selectors f of F and
consider

: '
! f /qu: {/fdu: f integra. seI.F}.

@ Debreu, [Deb67], used the embedding technique together with Bochner
integration for multi-function with values in ck(E) — convex compact
subsets of E;

The non-separable case

@ Pettis integration theory was stuck in the separable case for the lack of a
selection result in the general case.

@ Pettis integration for multi-functions was developed in the separable case.



Stay focused... three samples

The need of knowing the implications of semi-continuity
properties of multi-functions

Theorem, Talagrand 1975
Every WCG Banach space E is weakly Lindelof.




Stay focused... three samples

The need of knowing the implications of semi-continuity
properties of multi-functions

Theorem, Talagrand 1975
Every WCG Banach space E is weakly Lindelof.

... we will see several more applications.



Upper-semicontinuity
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Upper semi-continuous set-valued map (multi-function)
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Definitions

Upper semi-continuous set-valued map (multi-function)

© Y is K-analytic if there is y: NN — 2Y that is Upper semi-continuous
compact-valued and such that Y =g ey W(@);




Upper semi-continuity for multi-functions

Definitions

Upper semi-continuous set-valued map (multi-function)

X : 9v

@ Y is K-analytic if there is y: NN — 27 that is Upper semi-continuous
compact-valued and such that Y =gy W(@);

@ Y is countably K-determined if there is ¥ ¢ NN and y: ¥ — 2" that is
upper semi-continuous compact-valued and such that Y = Jyes y(@).




Upper semi-continuity for multi-functions

Definitions

Upper semi-continuous set-valued map (multi-function)

X : 9v

@ Y is K-analytic if there is y: NN — 27 that is Upper semi-continuous
compact-valued and such that Y =gy W(@);

NN &< any Polish space P J




Upper semi-continuity for multi-functions

Definitions

Upper semi-continuous set-valued map (multi-function)

X : 9v

Y

Y & any second countable space M (Lindelof X)

@ Y is countably K-determined if there is ¥ € NN and y: ¥ — 2Y that is
upper semi-continuous compact-valued and such that Y = Jyes W(@).




Upper semi-continuity for multi-functions

Easy known facts

Q Ify: X— 2Y that is upper semi-continuous compact-valued, then
K C X is compact = y(K) is compact;




Upper semi-continuity for multi-functions

Easy known facts

Q Ify: X— 2Y that is upper semi-continuous compact-valued, then
K C X is compact = y(K) is compact;

@ if yw: X —2Y that is upper semi-continuous compact-valued, then
L C X is Lindelof = (L) is Lindeldf;




Upper semi-continuity for multi-functions

Easy known facts

Q Ify: X— 2Y that is upper semi-continuous compact-valued, then
K C X is compact = y(K) is compact;

@ if yw: X —2Y that is upper semi-continuous compact-valued, then
L C X is Lindeléf = y(L) is Lindeldf;

@ K-analytic = countably K-determined = Lindelof;




Upper semi-continuity for multi-functions

Easy known facts

o
2]
o
o

Ify: X — 2Y that is upper semi-continuous compact-valued, then
K C X is compact = y(K) is compact;

if w:X —2Y that is upper semi-continuous compact-valued, then
L C X is Lindeléf = y(L) is Lindeldf;

K-analytic = countably K-determined = Lindelof;

countably K-determined + metrizable = separable;
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(B) Aq C Ag whenever o < f3;
(C) X =U{Aq:aec N}




Upper semi-continuity for multi-functions

Easy known facts

Q Ify: X— 2Y that is upper semi-continuous compact-valued, then
K C X is compact = y(K) is compact;

@ if yw: X —2Y that is upper semi-continuous compact-valued, then
L C X is Lindeléf = y(L) is Lindeldf;

© K-analytic = countably K-determined = Lindelof;
@ countably K-determined + metrizable = separable;
@ if X is K-analytic (v : NN = 2X) and Ay := y({B : B < a}) then:
(A) each Aq is compact;
(B) Aq C Ag whenever o < f3;
(C) X =U{Aq:aec N}
@ ditto, if X is countably K-determined, there is a second countable space
M and a family {Ak : K € 7# (M)} such that:
(A) each Ak is compact;
(B) Ak C Ar whenever K C F;
(C) X =U{Ax : K € #(M)}.




Upper semi-continuity for multi-functions

To keep in mind

Proposition

Let X be a metric space and y : X — 2" multi-valued . TFAE:
Q vy is usco;

@ v is compact valued 4 For every sequence x, — x in X if
¥Yn € W(xn), n € N then (y,)n has a cluster point y € y(x).




Upper semi-continuity for multi-functions

Simple facts to keep in mind

@ N endowed with the product of discrete topology on N is
separable and metrizable with a complete metric (i.e. NV is a
Polish space).




Upper semi-continuity for multi-functions

Simple facts to keep in mind

@ N endowed with the product of discrete topology on N is

separable and metrizable with a complete metric (i.e. NV is a
Polish space).

Q If o, — o in NN then there is B € NN such that

O, 00 < B

(here < stands for the natural order for the coordinates)




Upper semi-continuity for multi-functions

2nd LECTURE/SEP 15 2011/Things to remember

Upper semi-continuous set-valued map (multi-function)

@ Y is K-analytic if there is y : NN — 2 that is upper semi-continuous
compact-valued and such that Y =gy W(@);




Upper semi-continuity for multi-functions

2nd LECTURE/SEP 15 2011/Things to remember

@ K-analytic = Lindelof;

@ K-analytic + metrizable (or sub-metrizable) = separable;

@ if X is K-analytic (w: NN — 2X) and Ay == w({B : B < a}) then:
(A) each Ay is compact;
(B) Ag C Ag whenever a < f§;
(C) X =U{Aa: N},




Upper semi-continuity for multi-functions
®00

From increasing compact coverings to K-analyticity

@ Let X be a topological space {Ay : & € NN} of subsets of X with:

(A) each Ay is compact;
(B) Aq C Ag whenever o < f3;
(C) X =U{Ay: e N}
@ Given a = (ny) € NY and m € N, define

Covyroom = A : Bl = (n1, 12, ng) }
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From increasing compact coverings to K-analyticity

@ Let X be a topological space {Ag : & € NN} of subsets of X with:

(A) each Ay is compact;
(B) Aq C Ag whenever o < f3;
(C) X =U{Aqx:a N}
@ Given a = (ny) € NY and m € N, define

Covyroom = A : Bl = (n1, 12, ng) }
Proposition, B. C., 1987
Given X and {Ag : o € NV} as above, if we define ¢ : NY — 2X given by

l[/((X) = m Cor ... i
k=1

then:
@ Ay C y(a), hence w(NY) = X;
@ if a, — o in NN and y, € y(ay,) then (y,) has a cluster point in y(a);

X has K-analytic structure if countably compact subsets=compact subsets.
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From where the ideas were inspired

Anuanls of Matk

119 (1579, &07-4238

Fapaces de Banach faiblement
JC-analytiques

Par MICKEL TALAGRAND

PROPOSITION 6.18, Soit K un espace compact. Les assertions sutvantes
sont éguivalentes:

&), K est de type &,

b). Il exisic une application croissante 0 -+ A, de £ (muni de ordre
produit) dans Pensemble des compacts de €, (K) telle que L,y A, sépare les
points de K.

Démonstration. Nous savons déja que a) implique b) l'application
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Two nice previous cases

Valdivia, J. don Math. Soc.

QUASI-LB-SPACES

MANUEL VALDIVIA

We shall see later that properties (1) and (2) are important in order to obtain some
results on the closed graph theorem. This is the reason for introducing the following
definitions. A quasi-LB-representation in a topological vector space F is a family
{Ay: ae NN} of Banach discs satisfying the following conditions :

1. J{4y: aeNN} = F;

2. if o, fe NN and a < B then A, < Ap.
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Talagrand'’s solution to a conjecture Corson

, Talagrand 1975
Every WCG Banach space E is weakly Lindelof.

Proof .-
@ Fix W C E absolutely convex w-compact with E = spanWV/.

@ Given a = (ny) € NV,

Ag = (n1W+BE**)ﬁ(n2W+%BE*¥)ﬂ-~-ﬂ(n1W+%BEw)ﬂ...

@ Proposition = (E,w) K-analytic = (E,w) Lindeldf. &



Upper semi-continuity for multi-functions
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Fréchet-Montel spaces

Theorem, Dieudonné 1954

Every Fréchet-Montel space E is separable (in particular 5#(Q) is separable).

Proof.-

@ Fix Vi D Vo D--- D V,... a basis of closed neighborhoods of 0.
@ Given o = (n;) e NN,
Aa = m ny Vk.
k=1
@ {Ay:ac N} fundamental family of bdd closed sets=compact;

@ Proposition = E K-analytic +metrizable = E Lindel6f 4+ metrizable =
E separable. &
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2'(Q) is analytic

Theorem, 2'(2) is analytic.

The strong dual of every inductive limit of Fréchet-Montel spaces is analytic.
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2'(Q) is analytic

Theorem, 2'(2) is analytic.

The strong dual of every inductive limit of Fréchet-Montel spaces is analytic.

E, = E = = E = — E
Ul Uz Uy
u U u
u
o = : )
a= () U] U U
v (v2) ;
V]

Uy = aco(Ule Uﬁk)

@ UgCUnysia<PB; % :={Ux: a € NN} neigh. basis of 0 en E.
@ Ay := Uy compact & Aq C Ag, o < fB;

@ E'=U{Ay: €N} and E’ sub-metrizable = E’ K-analytic
sub-metrizable = E’ analytic.
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2'(Q) is analytic

Theorem, 2'(2) is analytic.

The strong dual of every inductive limit of Fréchet-Montel spaces is analytic.

E, = E, = = B = — E
Ul Uz P
u U u
u
o = : )
a= (s U] U U
v (v2) ;
V]

Schwartz, 1964

Any Borel linear map from a separable Banach space into 2/(Q) is continuous.
In particular, the Closed Graph Theorem holds for linear maps

T:2'(Q) - 7(9).
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Metrizability of compact sets (1)

K compact space & {Ay : a € NV} subsets of (K x K)\ A. We
write:

(A) each Ay is compact;

(B) Aq C Ag whenever o < j3;

(C) (Kx K)\A=U{Ay: ac N} )

Theorem (Orihuela, B.C. 1987)
(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Ay such that
F CAq.




N K compact space & {Aq : & € NN} subsets of (K x K)\ A. We write:
(A) each Aq is compact;
(B) Ag C Ag whenever a < f;

(C) (KxK)\A=U{Ag:aeN"}

Theorem (Orihuela, B.C. 1987)

(A) + (B) + (C) + (D) = K is metrizable.
(D) For each compact set F C (K x K)\ A, there is Ay such that F C Aq.

Proof.-
@ Given a € NN, define Ny := (K x K)\ Aqg.
@ Ny is a basis of open neighborhoods of A;

@ By :={f € C(K):|fllo < ny,|f(x)—f(y)| <L, whenever (x,y) € Neym};
for oo|™ := (nm,Nmt1,...), meN.

o

(A) each By is || ||-bdd & closed & equicontinuous Al B s
I [|c-compact;
(B) Ba C Bg whenever o < f3;
(C) C(K)=U{By: o ecN\}.
@ (C(K),|| ||) is K-analytic +metrizable = E Lindeldf + metrizable = E
separable = K is metrizable. &
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The original paper

Math. Z. 195, 365-381 (1987) Mathe.matIS_Che
Zeitschrift

© Springer-Verlag 1987

On Compactness in Locally Convex Spaces

B. Cascales and J. Orihuela

Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Murcia,
E-30.001-Murcia-Spain

1. Introduction and Terminology

The purpose of this paper is to show that the behaviour of compact subsets in
many of the locally convex spaces that usually appear in Functional Analysis
is as good as the corresponding behaviour of compact subsets in Banach
spaces. Our results can be intuitively formulated in the following terms: Deal-
ing with metrizable spaces or their strong duals, and carrying out any of the
usual operations of countable type with them, we ever obtain spaces with their
precompact subsets metrizable, and they even give good performance for the weak
topology, indeed they are weakly angelic, [14], and their weakly compact subsets
are metrizable if and only if they are separable.
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The techniques seems to be useful yet

INDEX
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The techniques seems to be useful yet
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(Strong) domination by irrationals
(Strong) domination by a second countable
space

Diagonal

Metrization

Orderings by irrationals

Orderings by a second countable space
Compact cover

Function spaces

Cosmic spaces

Given a space M, a family of sets A of a space X is ordered by M if A={Ak: K is a
compact subset of M} and K C L implies Ax C A;. We study the class M of spaces which
have compact covers ordered by a second countable space. We prove that a space Cp(X)
belongs to M if and only if it is a Lindelof X-space. Under MA(w;), if X is compact and
(X x X)\A has a compact cover ordered by a Polish space then X is metrizable; here
A ={(x,X): xe X} is the diagonal of the space X. Besides, if X is a compact space of
countable tightness and X2\ A belongs to M then X is metrizable in ZFC.
We also consider the class M* of spaces X which have a compact cover F ordered by
a second countable space with the additional property that, for every compact set P C X
there exists F € F with P C F. It is a ZFC result that if X is a compact space and (X x X)\ A
belongs to M* then X is metrizable. We also establish that, under CH, if X is compact and
Cp(X) belongs to M* then X is countable.

© 2010 Elsevier B.V. All rights reserved.
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Metrizability of compact sets (II)

K compact space & {Aq : & € NV} subsets of (K x K)\ A. We write:
(A) each Ay is compact;

(B) Aq C Ag whenever o < f3;
(€) (KxK)\A=U{Aq:aeN"}.

Theorem (Orihuela, Tkachuk, B.C. 2011)

(A) + (B) + (C) + MA(w1) = K is metrizable.

2.12. Theorem. Assume MA(w ) and suppose that X is a compact space such that X2\ A is P-dominated. Then X has a small diagonal
and hence t(X) = w.

Proof. Suppose that A = {zy: @ <@} C X2\A and « # B implies z, # zg. Fix a P-directed cover {K: p € P} of compact
subsets of X?\A. Take py € P such that z, € Ky, for any o < w;.

It follows from MA(w;) that there exists p € P’ such that p, <* p for any « < w;. The set P = J{Kq: g € P and q =* p}
is o-compact and A C P. Consequently, there is q € P for which Kq N A is uncountable; therefore the set K; N A witnesses
the small diagonal property of X. Since no space with a small diagonal can have a convergent w-sequence, it follows from
[16, Theorem 1.2] that X has no free sequences of length wy, ie., t(X) <w. O
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Open questions

More problems...here!

Contants ists availablaat ScenceDirect

Topology and its Applications

wanwaiseviercomfocatefiopol

Domination by second countable spaces and Lindel6f X-property
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Given 3 space M, 3 family of ses A of  space X is orderd by M if A= (Ax: K
e C Ay We study the cas A of spaces which

s space then X is metrizable: here
s s, X i 3 comp '

Je tghtness and X2\ beongs to V1 then X i metrizabe in ZFC
paces X which npact covr  ordeed by

25 resul that i X s 3 compact pace and (X« X)\>
W s cstablic tht, under G, X i compac and

© 2010 Exevier B Al righs eseved.

0. Introduction

Given a space X we denote by K'(X) the family of al compact subsets of X. One of about a dozen equivalent defntions
says that X is a Lindelo] Z-space or has th Lindelef X propety) i there exists a second countabl space M and a compact-
valued upper semicontinuous map ¢ < M — X such that Ulp(: x & M) = X (see, e, [23, Section 51]) It s worth
mentioning that in Functional Anaysi, the same concept is usualy rferte (0 as  countably K-determined spac.
uppose that X is a Lindelof -space and hence we can find a compact-valued upper semicontinuous surjective map
M — X for some second countable space M. If e let Fi = fy(0): X ¢ K) for any compact set K C M then the family
F=(Fi K & K(M)) consists of compact subsets of X, covers X and K c L implies Fx . We will say that 7 is an M-

K compact space &
{Ag:a e NV} C (K x K)\ A.
We write:
(A) each Ay is compact;
(B) Aq C Ag whenever a < f3;
(C) (KxK)\A=U{Ax:

a € NV}

Open question

(A) + (B) + (C) :7> K is metrizable.
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..our goal

@ To offer quantitative versions of the
results about compactness for spaces
C(K), C(X), Bi(X), Banach spaces, etc.
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@ To offer quantitative versions of the
results about compactness for spaces
C(K), C(X), Bi(X), Banach spaces, etc.

T @ To offer new applications of these
-~ quantitative versions;

tools
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| \

@ double limits techniques used by
Grothendieck; techniques learnt when
N dealing with Asplund spaces
RX | d | .
(fragmentability);

| @ new reading of the classical;

a < a < /\/]a @ selectors for lower semincontinuos
- functions;
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Lower semicontinuous multi-functions

If X and Y are topological spaces, a multi-functions y : X — 2Y is
said to be lower semicontinuous if for every open set G C Y the set

{xeX y(x)NG #0}

is open in X.
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Lower semicontinuous multi-functions

If X and Y are topological spaces, a multi-functions y : X — 2Y is
said to be lower semicontinuous if for every open set G C Y the set

{xeX y(x)NG #0}

is open in X.

f:Y — X onto, then y: X — 2Y given by

y(x) := f1(x), for every x € X

is lower semicontinuous iff f is open.

Proof .-
{x ex: fFlx)NG 7&@} = (G).
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Michael's selection theorem

Theorem (Michael, 1956)

If X is paracompact (for instance compact or metric) E a Banach
space and y : X — 2F is lower semicontinuous with closed convex
values, then W has a continuous selector.
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Michael's selection theorem

Theorem (Michael, 1956)

If X is paracompact (for instance compact or metric) E a Banach
space and v : X — 2F s lower semicontinuous with closed convex
values, then W has a continuous selector.

Corollary (Teorema de Bartle-Graves, 1952)

If E and F are Banach spaces, and T : E — F lineal continuous
and onto then there is a continuous map S : F — E such that
ToS =idf.

N

Apply the above to E — E/H for H C E closed subspace.

N




Sandwich's theorem

Lower semi-continuity for multi-functions
[eeX Yol

U(f) = {(@.y):y < file)}

fols.

h cont

fius.

Let f>,f1 : K — R be a lower and a upper
semicontinuous function with f, > fi. Then, there
exists a function h € C(K) such that f; > h > fi.
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S(f2) ={(x,9) 1y > fala)}

U(f) ={(x.y) 1y < fila)}

h cont.

fiu s

Let f,f1 : K — R be a lower and a upper
semicontinuous function with f; > fi. Then, there
exists a function h € C(K) such that f > h> f.

Q define y(x) = [fx), 2(x)] for x € K;

Q@ v : K — 2R satisfy Michael’s theorem
hypothesis. Indeed, if G =U;¢/(a;,b;) CR is
open, then

{xeX:y(x)NG#0} =
=J{xe X w(x)N(a;, b;) # 0}

iel

is open.
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Distances vs.oscillations

Let K be a compact space.
If f € RK is bounded, then

d(f, C(K)) = %osc(f).
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Let K be a compact space.
If f € RKX is bounded, then

d(f,C(K)) = %osc(f).

@ It is easy to check that
d(f,C(K)) > osc(f)/2.

@ For x € K, % family of neighb.

osc(f) > U'ngxysfepu (fly)—f(2))

> inf supf( )— sup mf f(z)

Ue Ue, 2€

p
f2(x) := sup inf f(z)+osc( )
Uew, z€U 2
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Let K be a compact space.
If f e RK is bounded, then

d(f,C(K)) = %osc(f).

Uh) = {(z.) -y < @)}

@ It is easy to check that
d(f,C(K)) > osc(f)/2.

@ For x € K, % family of neighb.

osc(f) > U'ngxysfepu (fly)—f(2))

> inf supf( )— sup mf f(z)

Ue Ue, 2€

p
f2(x) := sup inf f(z)+osc( )
Uew, z€U 2
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Let K be a compact space.
If f e RK is bounded, then

d(f,C(K)) = %osc(f).

Uh) = {(z.) -y < @)}

@ It is easy to check that
d(f,C(K)) > osc(f)/2.

@ For x € K, % family of neighb.

osc(f) > U'ngxysfepu (fly)—f(2))

> inf supf( )— sup mf f(z)

Ue Ue, 2€

p
f2(x) := sup inf f(z)+osc( )
Uew, z€U 2

@ Squeeze h between f; and f; and
d(f, C(K)) = £ — ]l = osc(F)/2.
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Measures of weak noncompactness

We use the formula d(f, C(K)) = 3 osc(f) to measure distances to
C(K) and the result below to apply what we do to Banach spaces.

| \

Proposition

Let £ be a Banach space and let Bg+ be the closed unit ball in the
dual E* endowed with the w*-topology. Let i : E — E** and

J: E* — lo(Bg+) be the canonical embedding. Then, for every
x** € E** we have:

d(x™,i(E)) = d(j(x™), C(Be-))-
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Relationship between measures of weak noncompactness

Theorem (...H C E bdd...)

ck(H) < k(H) < y(H) < 2ck(H) < 2k(H),
Y(H) = y(co(H)).

For any x** € ﬁw*, there is a sequence (xn)n in H such that
[x*™ = y™|| < ¥(H)

for any cluster point y** of (xn)n in E**. Furthermore, H is weakly relatively
compact in E iff it is zero one (all) of the numbers ck(H),k(H),y(H).

Y(H) = sup{\IiIrInIinr;'\fm(x,,)fli’_rnnli’r]nfm(x,,)\ :(fm) C Bex,(xn) C H},

k(H):= sup d( () Thnrnsm” E),
(hn)nCH  menN
K(H):=d(\" E)y= sup d(x**E),

et
x**eH"Y

The result above is the quantitative version of Eberlein-Smulyan and Krein-Smulyan theorems. From
k(co(H)) < 2k(H) straightforwardly follows Krein-Smulyan theorem. J
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Other extensions, applications and references

@ C. Angosto and B. Cascales.

The quantitative difference between
countable compactness and compactness.

J. Math. Anal. Appl. (2008),
doi:10.1016/j jmaa.2008.01.051, 2008.

@ C. Angosto, B. Cascales, and I. Namioka.
Distances to spaces of Baire one functions.

Math. Z., 263(1):103-124, 2009.

@ B. Cascales, W. Marciszesky, and M. Raja.

Distance to spaces of continuous
functions.

Topology Appl., 153(13):2303-2319, 2006.
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Our interest in selections: the integral of a multifunction

F :Q — cwk(E) —convex w-compact There are several possibilities to define the integral
of F:

@ to take a reasonable embedding j from
I cwk(E) into the Banach space Y (= lo(Bg+))

¢ and then study the integrability of jo F;
9 @ to take all integrable selectors f of F and
| 1 | consider

/qu: {/fdu: f integra. seI.F}.

@ Debreu, [Deb67], used the embedding technique together with Bochner
integration for multi-function with values in ck(E) — convex compact
subsets of E;

The non-separable case

@ Pettis integration theory was stuck in the separable case for the lack of a
selection result in the general case.

@ Pettis integration for multi-functions was developed in the separable case.
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Naive approach to find measurable selectors

@ start with a nice characterization of measurability for
f:Q—E;
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Naive approach to find measurable selectors

@ start with a nice characterization of measurability for
f:Q—E;

@ GUESS!!! what would be the natural extension (P) of the
above for multi-functions F : Q — 2F:

© Try to prove that (P) REALLY gives us measurable
selectors;

How good is this approach going to be?

As good as the real applications you can get!!! ]
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Starting point. .. an elementary result

f:Q—R. TFAE:
@ f is (u-)measurable;
@ For every € >0 A€ X7 there is B € ¥} such that
|-| —diamf(B) < ¢.
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f:Q— E. TFAE:
@ f is (u-)measurable;
@ For every € >0 A€ X7 there is B € ¥} such that
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For every € >0 A€ X+ there is B € X} such that

| || - diamf(B) < e.

Is there a reasonable extension of the above for multi-functions?
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A naive approach. ..

For every € >0 A€ X there is B € ¥} such that

| || —diamf(B) < e.

Is there a reasonable extension of the above for multi-functions?

Definition

. E . .
N F : QQ — 2% satisfies

property (P) if for each € >0
v and each A€ 71 there exist
b Be X} and D C E with

diam(D) < € such that

F(t)N D # 0 for every t € B.

(P) is the measure theory counterpart of o-fragmentable
multi-functions introduced by Jayne-Pallarés-Orihuela and Vera
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Multi-functions

Property (P)

F : Q — 2F satisfies property (P) if for each &€ >0 and each A€ St there exist B € ZX and D C E with
diam(D) < & such that F(t)ND # 0 for every t € B.
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Q@ tekee>0;
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Multi-functions

Property (P)

F : Q — 2F satisfies property (P) if for each &€ >0 and each A€ St there exist B € ZX and D C E with
diam(D) < & such that F(t)ND # 0 for every t € B.

Q Fix n=0;
Q@ teke e:=(1/2)";
e apply (P) for A=Q, € and F;

0 a maximality argument produces a partition of B's;

e enumerate B's as {B,} and choose any x, € Dp;
e define fe := Y5 XB, Xn:
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Multi-functions

Property (P)

F : Q — 2F satisfies property (P) if for each &€ >0 and each A€ St there exist B € ZX and D C E with
diam(D) < & such that F(t)ND # 0 for every t € B.

Q Fix n=0;
Q@ teke e:=(1/2)";
—} e apply (P) for A=Q, € and F;

e IR A ()]
Ve ‘*\:ﬂ 0 a maximality argument produces a partition of B's;

e enumerate B's as {B,} and choose any x, € Dp;

P T }‘,‘ 1) e define fe := Y5 XB, Xn:

,,’,‘ % 0 fe is p-measurable and d(fe(t),F(t)) < € p-a.e;




Measurability
°

Multi-functions

Property (P)

F : Q — 2F satisfies property (P) if for each &€ >0 and each A€ St there exist B € ZX and D C E with
diam(D) < & such that F(t)ND # 0 for every t € B.

Q Fix n=0;
Q@ teke e:=(1/2)";
I8} F()
- e e apply (P) for A=Q, € and F;

- B 1) o N ,
/s 0 a maximality argument produces a partition of B's;

t e enumerate B's as {B,} and choose any x, € Dp;
Q@ define £ =Y, x5, %0

0 fe is p-measurable and d(fe(t), F(t)) < & p-a.e;
Q@ define Fe(t) := F(t)N B(fe(t), )
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Property (P)

Measurability
°

F : Q — 2F satisfies property (P) if for each &€ >0 and each A€ St there exist B € ZX and D C E with

diam(D) < & such that F(t)ND # 0 for every t € B.

Q

f(1)

F(t)

Q Fix n=0;

Q@ teke e:=(1/2)";

e apply (P) for A=Q, € and F;

0 a maximality argument produces a partition of B's;
e enumerate B's as {B,} and choose any x, € Dp;
Q@ define £ =Y, x5, %0

0 fe is p-measurable and d(fe(t), F(t)) < & p-a.e;
Q@ define Fe(t) := F(t)N B(fe(t), )

©Q F Fe satisfies (P) GOTO 11;

@ sTop;

@ n:=n+1;
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F : Q — 2F satisfies property (P) if for each &€ >0 and each A€ St there exist B € ZX and D C E with

diam(D) < & such that F(t)ND # 0 for every t € B.

Q

f(1)

F(t)

Q Fix n=0;

Q@ teke e:=(1/2)";

e apply (P) for A=Q, € and F;

0 a maximality argument produces a partition of B's;
e enumerate B's as {B,} and choose any x, € Dp;
Q@ define £ =Y, x5, %0

0 fe is p-measurable and d(fe(t), F(t)) < & p-a.e;
Q@ define Fe(t) := F(t)N B(fe(t), )

©Q F Fe satisfies (P) GOTO 11;

@ sTop;

@ n:=n+1;

@ coTo2.
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Measurability

F : Q — 2F satisfies property (P) if for each &€ >0 and each A€ St there exist B € ZX and D C E with

diam(D) < & such that F(t)ND # 0 for every t € B.

Q Fe)

- N 1)

Q Fix n=0;

Q@ teke e:=(1/2)";

e apply (P) for A=Q, € and F;

0 a maximality argument produces a partition of B's;
e enumerate B's as {B,} and choose any x, € Dp;
Q@ define £ =Y, x5, %0

0 fe is p-measurable and d(fe(t), F(t)) < & p-a.e;
Q@ define Fe(t) := F(t)N B(fe(t), )

©Q F Fe satisfies (P) GOTO 11;

@ sTop;

@ n:=n+1;

@ coTo2.

We produce a sequence (f,) : 2 — E of u-measurable functions such that
(fa(t)) is Cauchy u-a.e., hence it is convergent.
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Multi-functions: measurable selections

Corollary, Kuratowski-Ryll Nardzewski, 1965

Let F:Q — 2F be a multi-function with closed non empty values of E. If E is
separable and F satisfies that

{teQ:F(t)NO #0} € X for each open set O C X. (E)

Then F admits a pu-measurable selector f.
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Multi-functions: measurable selections

Corollary, Kuratowski-Ryll Nardzewski, 1965

Let F:Q — 2F be a multi-function with closed non empty values of E. If E is
separable and F satisfies that

{teQ:F(t)NO #0} € X for each open set O C X. (E)

Then F admits a pu-measurable selector f.

Very little is known in the non separable case

Theorem
For a multi-function F : Q — wk(E) TFAE:
(i) F admits a strongly measurable selector.

(i) There exist a set of measure zero Qo € X, a separable subspace Y C X
and a multi-function G : Q\ Qo — wk(Y) that is Effros measurable and
such that G(t) C F(t) for every t € Q\ Qo;

(i) F satisfies property (P).
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We also developed techniques to prove

F : Q — cwk(E) scalarly measurable. Then there is a collection
{fa}a<dens(E+,w+) Of scalarly meas. selectors of F such that

F(t) = {fa(t): o <dens(E*,w*)} foreverytec Q.

Theorem

If F:Q — cwk(E) a Pettis integrable multi-function, then:
@ every scalarly measurable selector is Pettis integrable;
@ F admits a scalarly measurable selector.

Furthermore, F admits a collection {fo}g<dens(E*,w*) Of Pettis
integrable selectors such that

F(t) = {fa(t): o <dens(E*,w*)} for every t € Q.

Moreover, [, F du = ISg(A) for every A€ ¥.
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