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ABSTRACT. Given a complete probability space (Ω,Σ, µ) and a Banach space X we
establish formulas to compute the distance from a function f ∈ XΩ to the spaces of
strongly measurable functions and Bochner integrable functions. We study the relationship
between these distances and use them to prove some quantitative counterparts of Pettis’
measurability theorem. We also give several examples showing that some of our estimates
are sharp.

1. INTRODUCTION

A good number of mathematical analysis strategies, classical and modern results deal
with distances, optimization, inequalities and the consequences that can be derived from
them. The model we follow here is based on the simple idea of computing the distance
of an arbitrary function to a space of particular functions, namely continuous, Baire one,
integrable, etc. Below there is a beautiful example:

Theorem 1.1 (Benyamini and Lindenstrauss, [6, Proposition 1.18]). Let T be a normal
topological space. If f ∈ RT is bounded, then the distance of f to the space Cb(T ) of real
bounded and continuous functions is given by the equality

(1.1) d(f, Cb(T )) =
1

2
osc(f) ,

where

osc(f) = sup
x∈T

inf
{

sup
y,z∈U

|f(y)− f(z)| : U open neighborhood of x
}
.

The formula (1.1) as well as the computation of such kind of distances to other spaces
have been successfully used in a good a number of recent papers dealing with measures
of non-compactness, interpolation, Dunford-Pettis property, reflexivity, weak sequential
completness, etc. (see for instance [2, 3, 8, 9, 15, 20, 21, 22, 24, 27, 28]). Our aim here is
to establish a formula analogous to (1.1) but when dealing with measurable and integrable
(vector-valued) functions instead of continuous functions. Our hope is that beyond the
applications that we present in this paper, the formulas that we establish can be useful for
some other purposes as well.

Throughout the paper (X, ‖·‖) is a Banach space and (Ω,Σ, µ) is a complete probability
space for which we denote Σ+ = {B ∈ Σ : µ(B) > 0} and Σ+

A = {B ∈ Σ+ : B ⊂ A}
for A ∈ Σ+. µ∗ stands for the outer measure induced by µ. We denote by λ the Lebesgue
measure on the unit interval [0, 1]. BX stands for the closed unit ball of X , and X∗ is the
dual space of X . Given any set W ⊂ X we write diam(W ) = sup{‖x− y‖ : x, y ∈ W}.
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For f ∈ XΩ and S ⊂ XΩ we write d(f, S) = inf{d(f, g) : g ∈ S}, where d is the
supremum metric (that we allow to take the value ∞) given by

d(f, g) = sup{‖f(t)− g(t)‖ : t ∈ Ω}.

We use the convention inf ∅ = ∞. All unexplained terminology can be found in our
standard references [1] and [11].

We write M(µ,X) (resp. L1(µ,X)) to denote the subspace of XΩ made up of all
strongly measurable (resp. Bochner integrable) functions. Recall that a function f ∈ XΩ

is called: (i) simple if it can be written as a finite sum of functions of the form x1A, where
x ∈ X and A ∈ Σ; (ii) strongly measurable if it is the µ-a.e. limit of a sequence of simple
functions; (iii) Bochner integrable if it is strongly measurable and

∫
Ω
‖f(t)‖ dµ(t) < ∞.

Note that here we deal with ‘functions’ instead of ‘equivalence classes’. For simplicity, we
write M(µ) := M(µ,R) and L1(µ) := L1(µ,R).

To estimate the distance of f ∈ XΩ to M(µ,X) and L1(µ,X) we introduce the strong
measurability index

meas(f) := inf{ε > 0 : for every A ∈ Σ+ there is B ∈ Σ+
A with diam(f(B)) ≤ ε},

and the Bochner integrability index

int(f) := sup
A∈Σ+

a(f,A)

µ(A)

where
a(f,A) := inf

{ ∑
B∈Γ

µ(B) diam(f(B)) : Γ ∈ ΠA(f)
}

and ΠA(f) is the set of all partitions Γ of A into countably many elements of Σ such that:

(i) f(B) is bounded for every B ∈ Γ ∩ Σ+;
(ii) the series

∑
B∈Γ µ(B)‖f(tB)‖ is convergent for every choice tB ∈ B, B ∈ Γ.

Sections 2 and 3 are devoted to prove that for f ∈ XΩ we have

1

2
meas(f) ≤ d(f,M(µ,X)) ≤ meas(f) and

1

2
int(f) ≤ d(f,L1(µ,X)) ≤ int(f)

and that, when X = R, we actually have the following equalities:

d(f,M(µ)) =
1

2
meas(f) and d(f,L1(µ)) =

1

2
int(f).

Section 4 illustrates how the above indexes and distances can be used to offer a quanti-
tative version of Pettis’ measurability theorem, see [11, p. 42, Theorem 2]. The paper is
completed with several examples that show that some of the estimates for the distances that
we offer in the vector-valued case are sharp.

2. MEASURABILITY INDEX AND DISTANCES TO MEASURABLE FUNCTIONS

It is well-known that a function f : Ω → X is strongly measurable (i.e. f ∈ M(µ,X))
if and only if it satisfies the following property:

(?) for every ε > 0 and every A ∈ Σ+ there is B ∈ Σ+
A such that diam(f(B)) ≤ ε.

This fact is stated without proof in [18, Lemma 2.7] and implicitly can be found in [11,
p. 42, Corollary 3]. Inspired by this equivalence, we introduce the following definition.

Definition 2.1. The strong measurability index of a function f : Ω → X is defined as

meas(f) := inf{ε > 0 : for every A ∈ Σ+ there is B ∈ Σ+
A such that diam(f(B)) ≤ ε}.
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Note that, for any function f ∈ XΩ, we have meas(f) = 0 if and only if f satisfies
property (?) above, which is equivalent to saying that f ∈ M(µ,X). On the other hand,
by using a standard exhaustion process the index meas(f) can be rewritten as follows.

Remark 2.2. Let f : Ω → X be a function. Then

meas(f) = inf{ε > 0 : there is a countable collection B of pairwise disjoint

elements of Σ+ such that µ
(
Ω \

⋃
B
)
= 0 and diam(f(B)) ≤ ε for all B ∈ B}.

The next result provides a quantitative version of the equivalence between (?) and strong
measurability.

Theorem 2.3. Let f : Ω → X be a function. Then

(2.1)
1

2
meas(f) ≤ d(f,M(µ,X)) ≤ meas(f).

Moreover, if X = R then

(2.2) d(f,M(µ)) =
1

2
meas(f).

Proof. We begin by proving the first inequality in (2.1). Suppose d(f,M(µ,X)) < ∞.
Fix d(f,M(µ,X)) < ε and η > 0. Take g ∈ M(µ,X) such that

(2.3) ‖f(t)− g(t)‖ < ε for all t ∈ Ω.

Take any A ∈ Σ+. Since g is strongly measurable, there is a sequence of simple functions
gn : Ω → X such that limn gn = g µ-a.e. By Egorov’s theorem (see e.g. [12, p. 94,
Theorem 1]), there exist D ∈ Σ with µ(Ω \D) < µ(A) and n ∈ N such that

(2.4) ‖gn(t)− g(t)‖ ≤ η for all t ∈ D.

Clearly, A ∩ D ∈ Σ+. Since gn is a simple function, there is B ∈ Σ+
A∩D such that the

restriction gn|B is constant. For every t1, t2 ∈ B we have

‖f(t1)− f(t2)‖ ≤ ‖f(t1)− g(t1)‖+ ‖g(t1)− gn(t1)‖+ ‖gn(t1)− gn(t2)‖
+ ‖gn(t2)− g(t2)‖+ ‖g(t2)− f(t2)‖ < 2ε+ 2η

thanks to (2.3) and (2.4). Hence diam(f(B)) ≤ 2ε+ 2η. This shows that

meas(f) ≤ 2ε+ 2η.

Since η > 0 and ε > d(f,M(µ,X)) are arbitrary, meas(f) ≤ 2d(f,M(µ,X)).
We now prove the second inequality in (2.1). Assume that meas(f) < ∞. We shall

check that for every ε > meas(f) there is some g ∈ M(µ,X) with d(f, g) ≤ ε. Indeed,
by Remark 2.2 we can find a countable collection B of pairwise disjoint elements of Σ+

such that µ(Ω \
⋃
B) = 0 and diam(f(B)) ≤ ε for all B ∈ B. We pick xB ∈ f(B) for

every B ∈ B. Define g ∈ M(µ,X) as

(2.5) g(t) :=

{
xB if t ∈ B, B ∈ B,
f(t) if t ∈ Ω \

⋃
B.

Since diam(f(B)) ≤ ε and xB ∈ f(B) for every B ∈ B, we have d(f, g) ≤ ε. Hence
d(f,M(µ,X)) ≤ ε. Since ε > meas(f) is arbitrary, d(f,M(µ,X)) ≤ meas(f).

In the case X = R we can prove equality (2.2) by using a similar argument, but now
xB is chosen as the middle point of conv(f(B)) (which is an interval of length less than
or equal to ε). Then |f(t)− xB | ≤ ε/2 for every t ∈ B and every B ∈ B, so the function
g ∈ M(µ) defined as in (2.5) using the new xB’s satisfies d(f, g) ≤ ε/2. �
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The inequality 1
2 meas(f) ≤ d(f,M(µ,X)) in (2.1) is sharp because it becomes an

equality when X = R. On the other hand, Example 2.5 below shows that the inequality
d(f,M(µ,X)) ≤ meas(f) in (2.1) is also sharp. The example is based on the gen-
eral construction isolated in the following lemma. Recall first that a biorthogonal sys-
tem {(xi, x

∗
i )}i∈I ⊂ X × X∗ is called a Markushevich basis (shortly M-basis) of X if

X = span{xi}i∈I and {x∗
i }i∈I separates the points of X .

Lemma 2.4. Suppose µ is atomless and {(xi, x
∗
i )}i∈I ⊂ X×X∗ is a biorthogonal system

for which there is a set W ⊂ X such that

X = span
(
W ∪ {xi}i∈I

)
and x∗

i |W = 0 for every i ∈ I.

If f : Ω → X is a one-to-one function taking values in {xi}i∈I , then:

(i) d(f,M(µ,X)) ≥ 1 if ‖x∗
i ‖ ≤ 1 for all i ∈ I .

(ii) d(f,M(µ,X)) = 1 if ‖xi‖ = ‖x∗
i ‖ = 1 for all i ∈ I .

Proof. (i) Let g ∈ M(µ,X). Then there is A ∈ Σ with µ(Ω \ A) = 0 such that g(A) is
separable. Since X = span

(
W ∪ {xi}i∈I

)
, we can find a countable set I0 ⊂ I such that

g(A) ⊂ Y := span
(
W ∪ {xi}i∈I0

)
. Since f is one-to-one, the set D := f−1({xi}i∈I0)

is countable and the fact that µ is atomless guarantees that D ∈ Σ and µ(D) = 0. In
particular, we can choose t ∈ A \D. Write f(t) = xi for some i ∈ I \ I0 and observe that

‖f(t)− g(t)‖ ≥ |x∗
i (f(t)− g(t))| = |x∗

i (xi)− x∗
i (g(t))| = 1,

because x∗
i vanishes on Y 3 g(t). Hence d(f, g) ≥ 1. Since g ∈ M(µ,X) is arbitrary,

we get d(f,M(µ,X)) ≥ 1. Part (ii) now follows at once: if ‖xi‖ = 1 for all i ∈ I then
f(Ω) ⊂ BX and so d(f, 0) ≤ 1. �

Example 2.5. Let {(et, e∗t )}t∈[0,1] be the usual M-basis of X := c0([0, 1]) and define

f : [0, 1] → X, f(t) := et.

Then d(f,M(λ,X)) = meas(f) = 1.

Proof. Since ‖f(t) − f(s)‖ = 1 whenever t 6= s, we have diam(f(B)) = 1 for ev-
ery measurable set B ⊂ [0, 1] with λ(B) > 0 and so meas(f) = 1. The equality
d(f,M(λ,X)) = 1 follows from Lemma 2.4(ii). �

Remark 2.6. Recall that X is said to have uniform normal structure if there is a constant
0 < K < 1 such that the inequality

inf
x∈C

sup
y∈C

‖x− y‖ ≤ Kdiam(C)

holds for every bounded convex closed set C ⊂ X . For instance, every uniformly convex
Banach space has this property (see e.g. [19, Chapter 5]). When X has uniform normal
structure, the proof of Theorem 2.3 can be modified easily to obtain the inequality

(2.6) d(f,M(µ,X)) ≤ Kmeas(f)

for every function f : Ω → X . Of course, for (R, | · |) we have that K = 1
2 and therefore

equality (2.2) is again explained by (2.6).
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3. INTEGRABILITY INDEX AND DISTANCES TO INTEGRABLE FUNCTIONS

In this section we discuss a Bochner integrability index which is inspired by the con-
struction of some vector integrals via Riemann-type sums, like the Birkhoff integral [7, 10]
and the so-called Riemann-Lebesgue integral studied in [25, 26].

Given a function f : Ω → X and A ∈ Σ, we denote by ΠA(f) the set made up of all
partitions Γ of A into countably many elements of Σ such that:

(i) f(B) is bounded for every B ∈ Γ ∩ Σ+;
(ii) the series

∑
B∈Γ µ(B)‖f(tB)‖ is convergent for every choice tB ∈ B, B ∈ Γ.

Definition 3.1. Let f : Ω → X be a function. For every A ∈ Σ we define

a(f,A) := inf
{ ∑

B∈Γ

µ(B) diam(f(B)) : Γ ∈ ΠA(f)
}
.

The integrability index of f is defined as

int(f) := sup
A∈Σ+

a(f,A)

µ(A)
.

It turns out that a function f : Ω → X is Bochner integrable (i.e. f ∈ L1(µ,X))
if and only if int(f) = 0. In fact, our Theorem 3.6 below provides a quantitative and
more general version of such equivalence. We first need several auxiliary results. The next
proposition gives us the relationship between meas(f) and int(f).

Proposition 3.2. Let f : Ω → X be a function. Then

meas(f) ≤ int(f).

Proof. Assume that int(f) < ∞. Fix α > int(f) and A ∈ Σ+. Since

a(f,A) ≤ µ(A) int(f) < µ(A)α,

we can choose Γ ∈ ΠA(f) such that∑
C∈Γ

µ(C) diam(f(C)) < µ(A)α.

Define
Γ′ := {C ∈ Γ : diam(f(C)) ≥ α} and D :=

⋃
C∈Γ′

C.

Note that D ⊂ A, D ∈ Σ and

µ(D)α =
∑
C∈Γ′

µ(C)α ≤
∑
C∈Γ′

µ(C) diam(f(C)) ≤
∑
C∈Γ

µ(C) diam(f(C)) < µ(A)α.

Therefore µ(A \ D) > 0, so there is C ∈ Γ \ Γ′ such that µ(C) > 0. Then C ∈ Σ+
A

and diam(f(C)) < α. Since A ∈ Σ+ and α > int(f) are arbitrary, we conclude that
meas(f) ≤ int(f). �

Lemma 3.3. If f ∈ L1(µ,X) then int(f) = 0.

Proof. Fix A ∈ Σ+ and ε > 0. We shall check that a(f,A) ≤ ε. Since f is strongly
measurable, we can find a partition B of Ω into countably many elements of Σ such that

diam(f(B)) ≤ ε

µ(A)
for every B ∈ B ∩ Σ+

(see Remark 2.2 and the comments preceeding it). We claim that

Γ := {B ∩A : B ∈ B} ∈ ΠA(f).



6 C. ANGOSTO, B. CASCALES, AND J. RODRÍGUEZ

Indeed, note that diam(f(B ∩ A)) ≤ diam(f(B)) ≤ ε
µ(A) (and so f(B ∩ A) is bounded)

for every B ∈ B with B ∩A ∈ Σ+. On the other hand, pick tB ∈ B ∩A for every B ∈ B
with B ∩A 6= ∅. Define g ∈ M(µ,X) by the formula

g(t) :=

{
f(tB) if t ∈ B ∩A, B ∈ B,
f(t) if t ∈ Ω \A.

Since ‖f(t)− g(t)‖ ≤ ε
µ(A) for µ-a.e. t ∈ Ω, we have∑

B∈B
B∩A 6=∅

µ(B ∩A)‖f(tB)‖ =

∫
A

‖g(t)‖ dµ(t) ≤ ε+

∫
A

‖f(t)‖ dµ(t) < ∞.

This shows that Γ ∈ ΠA(f), as claimed. Moreover, since diam(f(B ∩ A)) ≤ ε
µ(A) for

every B ∈ B with B ∩A ∈ Σ+, we also have∑
B∈B

µ(B ∩A) diam(f(B ∩A)) ≤ ε.

Therefore a(f,A) ≤ ε. Since A ∈ Σ+ and ε > 0 are arbitrary, we get int(f) = 0. �

Lemma 3.4. Let f, g : Ω → X be two functions. Then

int(f) ≤ int(g) + 2d(f, g).

Proof. Assume that d(f, g) < ∞. It suffices to check that

(3.1) a(f,A) ≤ a(g,A) + 2d(f, g)µ(A) for every A ∈ Σ+.

To this end, fix A ∈ Σ+ with a(g,A) < ∞. Given any ε > 0, we can find Γ ∈ ΠA(g)

such that ∑
B∈Γ

µ(B) diam(g(B)) < a(g,A) + ε.

Clearly, the fact that d(f, g) < ∞ ensures that Γ ∈ ΠA(f) as well. Moreover, since
diam(f(B)) ≤ diam(g(B)) + 2d(f, g) for every B ∈ Γ, it follows that

a(f,A) ≤
∑
B∈Γ

µ(B) diam(f(B)) ≤
∑
B∈Γ

µ(B)
(
diam(g(B)) + 2d(f, g)

)
=

=
∑
B∈Γ

µ(B) diam(g(B)) + 2d(f, g)µ(A) < a(g,A) + ε+ 2d(f, g)µ(A).

Since ε > 0 is arbitrary, the inequality in (3.1) holds true and the proof is over. �

The next lemma is similar to [7, Theorem 1] (cf. [10, Lemma 2.1]), but here we
deal with absolute convergence instead of unconditional convergence of series in Banach
spaces. We include a proof for the convenience of the reader.

Lemma 3.5. Let f : Ω → X be a function and let Γ,Γ′ be two partitions of Ω into
countably many elements of Σ. If Γ′ if finer than Γ and Γ ∈ ΠΩ(f), then Γ′ ∈ ΠΩ(f).

Proof. Clearly, f(C) is bounded whenever C ∈ Γ′∩Σ+ (because any such C is contained
in some B ∈ Γ ∩ Σ+). Write

αB := sup
{
‖f(t)‖ : t ∈ B

}
for every B ∈ Γ ∩ Σ+. It is easy to check that∑

B∈Γ∩Σ+

µ(B)αB < ∞.
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Pick tC ∈ C for every (non-empty) C ∈ Γ′. Then∑
C∈Γ′

µ(C)‖f(tC)‖ =
∑

B∈Γ∩Σ+

∑
C∈Γ′

C⊂B

µ(C)‖f(tC)‖ ≤

≤
∑

B∈Γ∩Σ+

( ∑
C∈Γ′

C⊂B

µ(C)
)
αB =

∑
B∈Γ∩Σ+

µ(B)αB < ∞.

It follows that Γ′ ∈ ΠΩ(f). �

We have already gathered all the tools needed to prove the main result of this section:

Theorem 3.6. Let f : Ω → X be a function. Then

(3.2)
1

2
int(f) ≤ d(f,L1(µ,X)) ≤ int(f).

Moreover, if X = R then

(3.3) d(f,L1(µ)) =
1

2
int(f).

Proof. We first prove that int(f) ≤ 2d(f,L1(µ,X)). Assume that d(f,L1(µ,X)) < ∞
and fix ε > d(f,L1(µ,X)). Take g ∈ L1(µ,X) such that d(f, g) < ε. By Lemmas 3.3
and 3.4, we have int(f) ≤ 2ε. Since ε > d(f,L1(µ,X)) is arbitrary, we conclude that
int(f) ≤ 2d(f,L1(µ,X)).

We now prove that d(f,L1(µ,X)) ≤ int(f). Assume that int(f) < ∞, fix α > int(f)

and fix a partition Γ ∈ ΠΩ(f) (the collection ΠΩ(f) is non-empty because a(f,Ω) < ∞
and inf ∅ = ∞). Since meas(f) ≤ int(f) < α (by Proposition 3.2), there is a countable
collection B of pairwise disjoint elements of Σ+ such that

µ
(
Ω \

⋃
B
)
= 0 and diam(f(B)) ≤ α for all B ∈ B

(see Remark 2.2). Let Γ′ be any partition of Ω into countably many elements of Σ which
is finer than both Γ and B ∪ {Ω \

⋃
B}. Let Γ′′ be the collection of all non-empty D ∈ Γ′

which are contained in
⋃
B. Select xD ∈ f(D) for every D ∈ Γ′′. Let g be the function

which coincides with f on Ω \
⋃

B and satisfies g(t) = xD for every t ∈ D and every
D ∈ Γ′′. Clearly, we have ‖g(t)− f(t)‖ ≤ α for all t ∈ Ω and so d(f, g) ≤ α.

We now check that g ∈ L1(µ,X). We have g ∈ M(µ,X) by construction. Since
Γ′′ ⊂ Γ′ ∈ ΠΩ(f) (by Lemma 3.5), we have∫

Ω

‖g(t)‖ dµ(t) =
∑

D∈Γ′′

µ(D)‖xD‖ < ∞,

hence g ∈ L1(µ,X). Therefore, d(f,L1(µ,X)) ≤ α. Since α > int(f) is arbitrary, it
follows that d(f,L1(µ,X)) ≤ int(f). This finishes the proof of (3.2).

Finally, we can prove (3.3) when X = R by using a similar argument, but now xD is
chosen as the middle point of conv(f(D)) (which is an interval of length less than or equal
to α). Since |f(t)− xD| ≤ α/2 for every t ∈ D and every D ∈ Γ′′, the function g defined
as above using the new xD’s satisfies d(f, g) ≤ α/2. �

Remark 3.7. The proof of Theorem 3.6 actually shows that

d(f,L1(µ,X)) ≤ meas(f)

for any function f : Ω → X such that ΠΩ(f) 6= ∅.
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Both inequalities in (3.2) are sharp. Indeed, for the second one, take X := c0([0, 1])

and note that the function f : [0, 1] → X given by f(t) := et (see Example 2.5) satisfies
a(f,A) = 1 for every measurable set A ⊂ [0, 1] with λ(A) > 0, hence int(f) = 1. On the
other hand, since

d(f,L1(λ,X)) ≥ d(f,M(λ,X)) = 1,

from Theorem 3.6 we conclude that d(f,L1(λ,X)) = int(f) = 1.

Remark 3.8. If X has uniform normal structure (see Remark 2.6 for the definition), then
there is a constant 0 < K < 1 such that

d(f,L1(µ,X)) ≤ K int(f)

for every function f : Ω → X .

4. A QUANTITATIVE VERSION OF PETTIS’ MEASURABILITY THEOREM

The celebrated Pettis’ measurability theorem (see e.g. [11, p. 42, Theorem 2]) states
that a function f : Ω → X is strongly measurable if and only if it is scalarly measurable
(i.e. the composition x∗ ◦ f is measurable for every x∗ ∈ X∗) and essentially separably
valued (i.e. there is A ∈ Σ with µ(A) = 0 such that f(Ω \ A) is separable). In fact, for
the “if” part it suffices to assume that x∗ ◦ f is measurable for every x∗ belonging to some
norming set Υ ⊂ BX∗ (i.e. ‖x‖ = supx∗∈Υ |x∗(x)| for every x ∈ X).

In order to provide a quantitative version of Pettis’ result (see Theorem 4.5 below) we
introduce the following definition.

Definition 4.1. Let f : Ω → X be a function. Given ε > 0, we say that f is ε-essentially
separably valued if there exist A ∈ Σ with µ(A) = 0 and a countable set C ⊂ f(Ω \ A)
such that

f(Ω \A) ⊂ C + εBX .

We define
sep(f) = inf{ε > 0 : f is ε-essentially separably valued}.

It is easy to check that a function f : Ω → X is essentially separably valued if and only
if sep(f) = 0. On the other hand, sep(f) and d(f,M(µ,X)) are related as follows:

Lemma 4.2. Let f : Ω → X be a function. Then

1

2
sep(f) ≤ d(f,M(µ,X)).

Proof. Assume that d(f,M(µ,X)) < ∞, fix ε > d(f,M(µ,X)) and η > 0. Take
g ∈ M(µ,X) such that d(f, g) ≤ ε. There is A ∈ Σ with µ(A) = 0 such that g(Ω \A) is
separable. Fix a countable set D ⊂ Ω \A such that g(D) is dense in g(Ω \A). Then

f(Ω \A) ⊂ g(Ω \A) + εBX ⊂ g(D) + (ε+ η)BX ⊂ f(D) + (2ε+ η)BX .

Since ε > d(f,M(µ,X)) and η > 0 are arbitrary, we get sep(f) ≤ 2d(f,M(µ,X)). �

The next example (for p = 1) shows that the constant 1
2 appearing in Lemma 4.2 is

sharp.

Example 4.3. Let 1 ≤ p ≤ ∞ and take Xp := `p([0, 1]) if p < ∞ and Xp := c0([0, 1]) if
p = ∞. Define f : [0, 1] → Xp by f(t) := et, where {(et, e∗t )}t∈[0,1] is the usual M-basis
of Xp. Then d(f,M(λ,Xp)) = 1 and sep(f) = 21/p.
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Proof. The equality d(f,M(λ,Xp)) = 1 follows from Lemma 2.4 (ii). On the other hand,
the fact that

‖f(t)− f(s)‖ = ‖et − es‖ = 21/p whenever t 6= s

clearly implies that sep(f) ≤ 21/p. Conversely, observe that for every measurable set
B ⊂ [0, 1] with λ(B) = 1 and every countable set D ⊂ B, we can pick t ∈ B \D and so
‖f(t)− f(s)‖ = 21/p for every s ∈ D; hence sep(f) ≥ 21/p. �

The following easy lemma will be used in the proof of Theorem 4.5.

Lemma 4.4. Let F ⊂ RΩ be a countable pointwise bounded family and define

h(t) := sup
f∈F

|f(t)| < ∞ for every t ∈ Ω.

Then
d(h,M(µ)) ≤ sup

f∈F
d(f,M(µ)).

Proof. Assume that α := supf∈F d(f,M(µ)) < ∞ and fix β > α. Then for every f ∈ F
there is gf ∈ M(µ) such that d(f, gf ) ≤ β. Since F is pointwise bounded, the same holds
for {gf : f ∈ F}. Define g(t) := supf∈F |gf (t)| for every t ∈ Ω, so that g ∈ M(µ).
Given any t ∈ Ω, we have

|gf (t)| − β ≤ |f(t)| ≤ |gf (t)|+ β for every f ∈ F ,

hence g(t) − β ≤ h(t) ≤ g(t) − β. Thus d(h, g) ≤ β and so d(h,M(µ)) ≤ β. Since
β > α is arbitrary, we get d(h,M(µ)) ≤ α. �

We are now ready to prove a quantitative version of Pettis’ measurability theorem.

Theorem 4.5. Let f : Ω → X be a function and Υ ⊂ BX∗ a norming set. Then

(4.1) d(f,M(µ,X)) ≤ 2 sup
x∗∈Υ

d(x∗ ◦ f,M(µ)) + 3 sep(f).

Proof. We can assume without loss of generality that Υ is symmetric, that is, −x∗ ∈ Υ

whenever x∗ ∈ Υ. Assume that α := supx∗∈Υ d(x∗ ◦ f,M(µ)) and sep(f) are finite. Fix

u > α, w > sep(f) and ε > 0.

Choose A ∈ Σ with µ(A) = 0 and a countable set D ⊂ Ω \A such that

(4.2) f(Ω \A) ⊂ f(D) + wBX .

Since Υ is norming and symmetric, for every pair (d1, d2) ∈ D × D we can select
x∗
(d1,d2)

∈ Υ such that

(4.3) x∗
(d1,d2)

(f(d1)− f(d2)) > ‖f(d1)− f(d2)‖ − ε.

For every d ∈ D we define a function gd : Ω → R by

gd(t) := sup
(d1,d2)∈D×D

∣∣hd,d1,d2(t)
∣∣

where hd,d1,d2(t) := x∗
(d1,d2)

(f(t) − f(d)). We have d(gd,M(µ)) < u, thanks to
Lemma 4.4 and the fact that

d
(
hd,d1,d2 ,M(µ)

)
= d

(
x∗
(d1,d2)

◦ f,M(µ)
)
≤ α < u for every (d1, d2) ∈ D ×D.

For every d ∈ D we fix g̃d ∈ M(µ) such that d(gd, g̃d) < u and we define

Ad := {t ∈ Ω : g̃d(t) < u+ w} ∈ Σ.
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For every t ∈ Ω \ A we have ‖f(t) − f(d)‖ ≤ w for some d ∈ D (by (4.2)), hence
gd(t) ≤ w and so t ∈ Ad (bear in mind that d(gd, g̃d) < u). This shows that

Ω \A ⊂
⋃
d∈D

Ad.

Since D is countable, we can find a partition Ω \ A =
⋃

d∈D Bd such that Bd ∈ Σ and
Bd ⊂ Ad for every d ∈ D. Define g ∈ M(µ,X) by the formula

g(t) :=

{
f(d) if t ∈ Bd, d ∈ D,

f(t) otherwise.

CLAIM. ‖f(t)− g(t)‖ < 2u+ 3w + ε for every t ∈ Ω.

Indeed, the claim is obvious if t ∈ A. Suppose t ∈ Ω \ A and take d ∈ D such that
t ∈ Bd ⊂ Ad. Since g̃d(t) < u + w and d(gd, g̃d) < u, we have gd(t) < 2u + w and
therefore

(4.4)
∣∣x∗

(d1,d2)
(f(t)− f(d))

∣∣ < 2u+ w for all (d1, d2) ∈ D ×D.

By (4.2) there is some d′ ∈ D such that ‖f(t)− f(d′)‖ ≤ w. Then

‖g(t)− f(t)‖ t∈Bd= ‖f(d)− f(t)‖ ≤ ‖f(d)− f(d′)‖+ ‖f(d′)− f(t)‖ ≤

≤ ‖f(d)− f(d′)‖+ w
(4.3)
< x∗

(d,d′)(f(d)− f(d′)) + ε+ w =

= x∗
(d,d′)(f(d)− f(t)) + x∗

(d,d′)(f(t)− f(d′)) + ε+ w <

(4.4)
< 2u+2w+x∗

(d,d′)(f(t)−f(d′))+ε ≤ 2u+2w+‖f(t)−f(d′)‖+ε ≤ 2u+3w+ε.

The CLAIM is proved.
It follows that d(f,M(µ,X)) ≤ 2u + 3w + ε. Since u > α, w > sep(f) and ε > 0

are arbitrary, inequality (4.1) holds and the proof is finished. �

Corollary 4.6. For any function f : Ω → X we have

d(f,M(µ,X)) ≤ 2 sup
x∗∈BX∗

d(x∗ ◦ f,M(µ)) + 3 sep(f).

The next proposition shows that the constant 2 in inequality (4.1) of Theorem 4.5 is
sharp, even if the set Υ ⊂ BX∗ is assumed to be a boundary (i.e. for every x ∈ X

there is x∗ ∈ Υ such that ‖x‖ = x∗(x)). The construction can be done in any Banach
space containing a complemented subspace isomorphic to c0. In particular, it works for
Banach spaces containing a subspace isomorphic to c0 which, in addition, are separable or
have the Separable Complementation Property (thanks to Sobczyk’s theorem, see e.g. [1,
Corollary 2.5.9]), like all (infinite-dimensional) weakly Lindelöf determined C(K) spaces.

Proposition 4.7. Suppose X contains a complemented subspace isomorphic to c0. Then
there exist (up to renorming) a boundary Υ ⊂ BX∗ and a function f : [0, 1] → X having
separable range such that

(4.5) d(f,M(λ,X)) = 2 sup
x∗∈Υ

d(x∗ ◦ f,M(λ)).

Proof. We divide the proof into several steps.

STEP 1. Write X = Y ⊕ Z where Y is isomorphic to c0. Let P : X → Y be the
corresponding projection onto Y . We can find an equivalent norm ‖ · ‖ on X such that

‖x‖ = ‖P (x)‖+ ‖x− P (x)‖ for all x ∈ X
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and (Y, ‖ · ‖) is isometric to (c0, ‖ · ‖∞). Fix an isometry T : Y → c0. For every n ∈ N
and every ϕ ∈ BZ∗ , let ϕn ∈ BX∗ be the functional defined by

〈ϕn, x〉 := 〈e∗n ◦ T, P (x)〉+ 〈ϕ, x− P (x)〉 for all x ∈ X,

where e∗n ∈ Bc∗0
stands for the n-th coordinate projection. Clearly, the set

Υ := {ϕn : n ∈ N, ϕ ∈ BZ∗} ⊂ BX∗

is a boundary. Fix a countable partition [0, 1] =
⋃

n∈N An in such a way that λ∗(An) = 1

for every n ∈ N (see e.g. [17, 419I]). Define g : [0, 1] → c0 by the formula

g(t) :=
(
1An(t)

)
n∈N

and set f := T−1 ◦ g : [0, 1] → Y ⊂ X . Then f([0, 1]) is separable (because Y is
separable). We shall check that f satisfies (4.5) for the boundary Υ defined above.

STEP 2. Fix n ∈ N and ϕ ∈ BZ∗ . We claim that fn,ϕ := ϕn ◦ f satisfies

(4.6) d(fn,ϕ,M(λ)) ≤ 1

2
.

Indeed, observe that for every t ∈ [0, 1] we have

(4.7) fn,ϕ(t) = 〈ϕn, f(t)〉 =
〈
e∗n ◦ T, P (f(t))

〉
+

〈
ϕ, f(t)− P (f(t))

〉 f(t)∈Y
=

= 〈e∗n ◦ T, f(t)〉 = 〈e∗n, g(t)〉 = 1An(t),

hence |fn,ϕ(t)− 1
2 | = |1An(t)− 1

2 | =
1
2 . Therefore, d(fn,ϕ,M(λ)) ≤ 1

2 .

STEP 3. We shall check that d(f,M(λ,X)) ≥ 1. Fix any h ∈ M(λ,X) and set h0 ∈
M(λ, c0) by h0 := T ◦P ◦ h. Fix ε > 0. Take a measurable set A ⊂ [0, 1] with λ(A) > 0

such that diam(h0(A)) ≤ ε and pick t1 ∈ A ∩ A1 (bear in mind that λ∗(A1) = 1). Since
h0(t1) ∈ c0, we can choose n ∈ N large enough such that

(4.8)
∣∣e∗n(h0(t1))

∣∣ ≤ ε.

Pick tn ∈ A ∩An (bear in mind that λ∗(An) = 1) and choose ϕ ∈ BZ∗ arbitrary. Since

e∗n ◦ h0 = e∗n ◦ T ◦ P ◦ h = ϕn ◦ P ◦ h,

we have

(4.9) d(f, h) ≥ ‖f(tn)− h(tn)‖
f(tn)∈Y

≥ ‖f(tn)− P (h(tn))‖ ≥

≥
∣∣〈ϕn, f(tn)− P (h(tn))

〉∣∣ = ∣∣fn,ϕ(tn)− e∗n(h0(tn))
∣∣ (4.7)
=

∣∣1− e∗n(h0(tn))
∣∣.

On the other hand,

(4.10) 1− ε
(4.8)
≤ 1−

∣∣e∗n(h0(t1))
∣∣ ≤

≤
∣∣1− e∗n(h0(tn))

∣∣+ ∣∣e∗n(h0(tn))− e∗n(h0(t1))
∣∣ ≤ ∣∣1− e∗n(h0(tn))

∣∣+ ε,

where the last inequality follows from the fact that diam(h0(A)) ≤ ε. By putting together
(4.9) and (4.10), we get d(f, h) ≥ 1− 2ε. Since h ∈ M(λ,X) and ε > 0 are arbitrary, we
conclude that d(f,M(λ,X)) ≥ 1.

STEP 4. According to Step 3 and Theorem 4.5, we have

1 ≤ d(f,M(λ,X)) ≤ 2 sup
x∗∈Υ

d(x∗ ◦ f,M(λ)).
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Now, from (4.6) it follows that

1 = d(f,M(λ,X)) = 2 sup
x∗∈Υ

d(x∗ ◦ f,M(λ))

and the proof is over. �

Remark 4.8. When X = c0 the construction of Proposition 4.7 can be carried out for the
supremum norm ‖ · ‖∞ and the boundary Υ = {e∗n : n ∈ N}.

In view of Theorem 4.5, any scalarly measurable function f : Ω → X satisfies the
inequality d(f,M(µ,X)) ≤ 3 sep(f) and so, bearing in mind Lemma 4.2, we have

(4.11)
1

2
sep(f) ≤ d(f,M(µ,X)) ≤ 3 sep(f),

and therefore for scalarly measurable functions meas(·) and sep(·) are equivalent indexes.

Example 4.3 above makes clear that, when we restrict ourselves to scalarly measurable
functions, the constant 1

2 in (4.11) cannot be replaced by any constant C > 1
2 . However,

we do not know an example of a scalarly measurable function f which is not strongly
measurable and satisfies the equality 1

2 sep(f) = d(f,M(µ,X)) (note that the function
given in Example 4.3 is not scalarly measurable when p = 1). On the other hand, we also
do not know whether the constant 3 in (4.11) is sharp. The rest of the section is devoted to
study improvements of that inequality in some particular cases.

Our first result in this direction is valid when the norm function ‖ · ‖ : X → R is
measurable for the Baire σ-algebra of the weak topology, denoted by Ba(X,w). This is
the σ-algebra on X generated by X∗, see [13, Theorem 2.3] (cf. [30, 2-2-4]). Clearly,
‖ · ‖ is Ba(X,w)-measurable whenever BX∗ is w∗-separable (for instance, this holds for
X = `∞ equipped with the supremum norm ‖ · ‖∞ as well as for any of its subspaces).
The connections between the Ba(X,w)-measurability of the norm and the w∗-separability
of BX∗ and X∗ have been studied amongst others in [4, 5, 29].

Proposition 4.9. Suppose ‖ · ‖ is Ba(X,w)-measurable. If f : Ω → X is scalarly
measurable, then

(4.12) d(f,M(µ,X)) ≤ sep(f).

Proof. Assume that sep(f) < ∞ and fix ε > sep(f). Take A ∈ Σ with µ(Ω \A) = 0 and
a countable set D ⊂ A such that

(4.13) f(A) ⊂ f(D) + εBX .

For each d ∈ D, let Bd ⊂ X be the closed ball of radius ε centered at f(d). Since ‖ · ‖ is
Ba(X,w)-measurable and f is Σ-Ba(X,w)-measurable, we have f−1(Bd) ∈ Σ for every
d ∈ D. Moreover, (4.13) implies that A ⊂

⋃
d∈D f−1(Bd). Since D is countable, we can

find a partition A =
⋃

d∈D Ad such that Ad ⊂ f−1(Bd) and Ad ∈ Σ for every d ∈ D.
Define g ∈ M(µ,X) by declaring g(t) := f(d) if t ∈ Ad and d ∈ D and g(t) := f(t)

otherwise. Clearly, we have d(f, g) ≤ ε and so d(f,M(µ,X)) ≤ ε. Since ε > sep(f) is
arbitrary, inequality (4.12) holds. �

The following example shows that the inequality (4.12) in Proposition 4.9 is sharp.

Example 4.10. There exist a subspace X of (`∞, ‖ · ‖∞) and a scalarly measurable func-
tion f : [0, 1] → X such that

d(f,M(λ,X)) = sep(f) = 1.
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Proof. Set T :=
⋃∞

n=1{0, 1}n and K := {0, 1}N. For every u = (ui)
∞
i=1 ∈ K we define

Bu := {u|n : n ∈ N} ⊂ T , where u|n := (ui)
n
i=1 ∈ {0, 1}n for all n ∈ N. Note that T

is countable, {Bu : u ∈ K} has cardinality c and is made up of infinite subsets of T such
that Bu ∩Bv is finite whenever u 6= v (i.e. {Bu : u ∈ K} is almost disjoint).

Let X be the Johnson-Lindenstrauss subspace of (`∞(T ), ‖ · ‖∞) defined by the family
{Bu : u ∈ K}. Namely, X is the closed linear span of X0 := c0(T )∪{1Bu : u ∈ K}, see
[23, Example 2]. Any x ∈ X0 can be written in a unique way as x = y +

∑
v∈K av1Bv ,

where y ∈ c0(T ), av ∈ R and av = 0 for all but finitely many v’s. For each u ∈ K, let
ϕu be the linear functional on X0 which vanishes on c0(T ) and satisfies ϕu(1Bv ) = δu,v
(the Kronecker symbol) for all v ∈ K. Since |ϕu(x)| ≤ ‖x‖∞ for all x ∈ X0, there is
ϕ̃u ∈ X∗ extending ϕu, with ‖ϕ̃u‖ = 1. Clearly, {(1Bu

, ϕ̃u) : u ∈ K} ⊂ X × X∗ is a
biorthogonal system.

Define f : K → X by f(u) := 1Bu (Hagler’s function), so that f is scalarly measurable
when K is equipped with its standard Radon probability ν (see [11, p. 43, Example 7] or
[30, 3-2-4]). Note that (K, ν) is measure space isomorphic to ([0, 1], λ), see e.g. [16,
254K]. In view of Lemma 2.4(ii), we have d(f,M(ν,X)) = 1. On the other hand, we
have sep(f) ≤ 1 because

‖f(u)− f(v)‖∞ = ‖1Bu − 1Bv‖∞ ≤ 1 whenever u, v ∈ K.

Bearing in mind Proposition 4.9, we conclude that 1 = d(f,M(ν,X)) = sep(f). �

Recall that X is measure-compact (in its weak topology) if and only if for every proba-
bility measure ν on Ba(X,w) there is a separable subspace Y ⊂ X such that ν∗(Y ) = 1.
For instance, every weakly Lindelöf Banach space is measure-compact. Such a property
was considered in connection with Pettis integration, see e.g. [14, 30].

In Corollary 4.13 below we shall prove that the inequality d(f,M(µ,X)) ≤ 2 sep(f)

holds for any scalarly measurable function f : Ω → X whenever X is measure-compact.
To this end we need the following lemma. Recall that two functions f, g : Ω → X are
said to be scalarly equivalent if for every x∗ ∈ X∗ we have x∗ ◦ f = x∗ ◦ g µ-a.e. (the
exceptional set depending on x∗).

Lemma 4.11. If f, g : Ω → X are scalarly equivalent functions, then

‖f(t)− g(t)‖ ≤ 2 sep(f) + meas(g) for µ-a.e. t ∈ Ω.

Proof. Assume that sep(f) and meas(g) are finite. Fix ε > sep(f) and η > meas(g)

arbitrary and define

Aε,η := {t ∈ Ω : ‖f(t)− g(t)‖ > 2ε+ η}.

We shall prove that µ∗(Aε,η) = 0 by contradiction. Suppose that µ∗(Aε,η) > 0. Since
ε > sep(f), we can find B ∈ Σ with µ(Ω \B) = 0 and a countable set D ⊂ B such that

f(B) ⊂ f(D) + εBX .

For each t ∈ D, set

(4.14) Bt := {s ∈ B : ‖f(s)− f(t)‖ ≤ ε},

so that B =
⋃

t∈D Bt. Since D is countable, there is t0 ∈ D such that µ∗(Aε,η∩Bt0) > 0.
Fix W ⊃ Aε,η ∩ Bt0 with W ∈ Σ and µ(W ) = µ∗(Aε,η ∩ Bt0) > 0. The fact that
η > meas(g) ensures the existence of C ∈ Σ+

W for which

(4.15) diam(g(C)) ≤ η.
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We have C ∩ Aε,η ∩ Bt0 6= ∅ (because C ∈ Σ+
W and µ(W ) = µ∗(Aε,η ∩ Bt0)). Pick

s1 ∈ C ∩ Aε,η ∩ Bt0 . In particular, we have ‖f(s1) − g(s1)‖ > 2ε + η and so there is
x∗ ∈ BX∗ such that

(4.16)
∣∣x∗(f(s1))− x∗(g(s1))

∣∣ > 2ε+ η.

Set

(4.17) U :=
{
s ∈ Ω : x∗(f(s)) = x∗(g(s))

}
.

Observe that U ∈ Σ and µ(Ω \U) = 0 (bear in mind that f and g are scalarly equivalent).
Since U ∩ C ∈ Σ+

W and µ(W ) = µ∗(Aε,η ∩ Bt0), we have U ∩ C ∩ Aε,η ∩ Bt0 6= ∅, so
we can pick s2 ∈ U ∩ C ∩Aε,η ∩Bt0 . Therefore

2ε+ η
(4.16)
<

∣∣x∗(f(s1))− x∗(g(s1))
∣∣ ≤

≤
∣∣x∗(f(s1)− f(s2))

∣∣+ ∣∣x∗(f(s2))− x∗(g(s2))
∣∣+ ∣∣x∗(g(s2)− g(s1))

∣∣ ≤
≤ ‖f(s1)− f(s2)‖+

∣∣x∗(f(s2))− x∗(g(s2))
∣∣+ ‖g(s2)− g(s1)‖ ≤

(4.14)
≤ 2ε+

∣∣x∗(f(s2))− x∗(g(s2))
∣∣+ ‖g(s2)− g(s1)‖ =

(4.17)
= 2ε+ ‖g(s2)− g(s1)‖

(4.15)
≤ 2ε+ η,

a contradiction.
This shows that µ∗(Aε,η) = 0 for every ε > sep(f) and every η > meas(g). Now let

(εn) and (ηn) be sequences of real numbers with εn ↘ sep(f) and ηn ↘ meas(g). Since

A := {t ∈ Ω : ‖f(t)− g(t)‖ > 2 sep(f) + meas(g)} =
⋃
n∈N

Aεn,ηn ,

we conclude that µ∗(A) = 0 and the proof is over. �

Corollary 4.12. If f : Ω → X is scalarly equivalent to a strongly measurable function,
then

d(f,M(µ,X)) ≤ 2 sep(f).

Proof. Let g : Ω → X be any strongly measurable function such that f and g are scalarly
equivalent. By Lemma 4.11, there is V ∈ Σ with µ(Ω \ V ) = 0 such that

‖f(t)− g(t)‖ ≤ 2 sep(f) for every t ∈ V.

Define g̃ ∈ M(µ,X) by g̃(t) := g(t) if t ∈ V and g̃(t) := f(t) if t ∈ Ω \ V . Clearly, we
have d(f, g̃) ≤ 2 sep(f), hence d(f,M(µ,X)) ≤ 2 sep(f). �

A result of Edgar (see [13, Proposition 5.4], cf. [30, 3-4-6]) states that every scalarly
measurable function taking values in a measure-compact Banach space is scalarly equiva-
lent to a strongly measurable function. As an immediate consequence we have:

Corollary 4.13. Suppose X is measure-compact. If f : Ω → X is scalarly measurable,
then

d(f,M(µ,X)) ≤ 2 sep(f).

We do not know whether the inequality above is sharp.
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