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N Vioin result |

An _eXt Let X be a Banach space and let H C X be a bounded
Revistz:  sybset of X. Then
o A.S. ( Tleonv(H) d(H
d(conv(H), X) < 2d(H, X),
Conve emeEhed) <ol )

Math. @ closures are taken in the bidual X**;
@ d(A, X) :=sup{d(a,X):a€ A} for AC X,
() a(A,X) =0 iff A C X, hence the inequality implies
Krein's theorem.
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@ Let X be a Banach space and let H C X** be a
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Convexi

Math. / d(conv(H), X) < 5d(H, X),
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The starting point.. . our goal

The starting point. ..

@ M. Fabian, P. Hajek, V. Montesinos, and V. Zizler.
A quantitative version of Krein's Theorem..
Rev. Mat. |Iberoamericana, 2005.

@ A.S. Granero.
An ext
Revista

@ Let X be a Banach space and let H C X** be a

@ ASG bounded subset of X**. Then
Convexi N L
Math. ¢ d(conv(H),X) S 5d(H7X)7

@ Some of the constant involved are sharp.
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The starting point.. . our goal

.our goal

@ To take the results where (I think!) they
belongs i.e. to the context of C(K) and
R¥ spaces endowed with 7;
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@ To take the results where (I think!) they
- belongs i.e. to the context of C(K) and
__Cf>(H)"’ R¥ spaces endowed with 7,;
/// \\\ @ To quantify some other classical results
\ H z i about compactness.
N 1 /‘,’:
a:
C(K) o
‘ ! @ new reading of the classical;
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...our goal

The starting point...

RK

B. Cascales, W. Marciszewski and M. Raja (Top.

. Appl. 2005)

our goal

@ To take the results where (I think!) they
belongs i.e. to the context of C(K) and
R¥ spaces endowed with Tt

@ To quantify some other classical results
about compactness.

@ new reading of the classical,

@ double limits used by Grothendieck.

Distance to spaces of continuous functions



Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Distances vs. oscillations

To Y =10, lj
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Distances vs. oscillations

Let Y be a normal space®. If
f € RY is bounded, then

d(f, C*(Y)) = %osc(f).

?losc(f) = sup,¢y osc(f,x)]
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Distances vs.oscillations

Let Y be a normal space. If
f € RY is bounded, then

d(f, C*(Y)) = %osc(f).
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Distances vs.oscillations

@ It is easy to check that
d(f,C*(Y)) > osc(f)/2.

Let Y be a normal space. If
f € RY is bounded, then

d(f, C*(Y)) = %osc(f).
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Distances vs.oscillations

@ It is easy to check that
Let Y be a normal space. If d(f, C*(Y)) 2 osc(f)/2.
f € RV is bounded, then @ For x € Y, Uy family of neighb.
> _
() 2 Juf s (fly) = f(2))

> inf supf(y)— sup inf f(z
UEUXyEU ( ) UEZ/{XZEU ( )

d(f, C*(Y)) = %osc(f).

Distance to spaces of continuous functions
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Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Distances vs.oscillations

@ It is easy to check that
Let Y be a normal space. If d(f, C*(Y)) 2 osc(f)/2.
f € RY is bounded, then @ For x € Y, Uy family of neighb.

(fy) = f(2)

> inf supf(y)— sup inf f(z)

osc(f) > inf su
( ) T U€ely yyzepu

d(f, C*(Y)) = %osc(f).

T UeUxyeu Uctty 2€U
o
o . osc(f)
h(x) = jggx JQE f(z) + >
. osc(f)
> _— —:
2 jnf, sue——3 Alx)
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Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Distances vs.oscillations

@ It is easy to check that
d(f,C*(Y)) > osc(f)/2.

Let Y be a normal space. If
f € RV is bounded, then @ For x € Y, Uy family of neighb.

(fy) = f(2)

osc(f) > inf su
( ) T U€ely yyzepu

d(f, C*(Y)) = %osc(f).
> inf supf(y)— sup inf f(z)

R T VU yey veu, z€V
A fal s o
/ \ Vo f
\ \ h cont fi(x) = sup inf F(z) + osc(f)
/\ /K \ | vel, 2€U 2
f“" \ \ / fiu s . (e
\\\ // \ / > Umzf{ sUP_# = fl(X)
\ / _ €Uy yey

U(h) ={(@.9) 1y < @)}

Katetov theorem (Y normal)
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Distances vs. oscillations
Primary results

Oscillations vs. iterated limits

Iterated limits vs. distances
Iterated limits and convex hulls
Distances vs.oscillations
@ It is easy to check that
Let Y be a normal space. If d(f, C*(Y)) 2 osc(f)/2.
f € RY is bounded, then @ For x € Y, U, family of neighb.
d(f, C*(¥)) = 5 osc(f). ose(f) > inf

su f —f(z
GMxy,zepu( (v) ( ))
S() = {(e.1) v > Hl=)}

N

\
\\\ \
A\ \
/ / L

> JQ&JEB f(y) — sup inf f(z)
[

Uely zel

h cont.

f(x) := sup inf f(z) + osc(f)

Ueldy 2EV 2
fin s

. osc(f)

> _— =
= ST T2 Alx)
~

U(h) ={(@.9) 1y < @)}

@ Squeeze h between £, and f; and
d(f,C*(Y)) = ||f — h||oo = 0sc(f)/2

Katetov theorem (Y normal)
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Oscillations vs. iterated limits.

Definition

H c ZX e-interchanges limits with
X if

d(limlim £ (xn), lim lim iy (x)) < €

whenever (x,) in X and (f,) in H
and all limits involved do exist.
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Oscillations vs. iterated limits.

First properties. .. K compact ‘

@ For the notion of H e-interch. limits
H c ZX e-interchanges limits with with X sequences can be replaced by
X if nets.

d(limlim £ (xn), lim lim iy (x)) < €

whenever (x,) in X and (f,) in H
and all limits involved do exist.
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Oscillations vs. iterated limits.

First properties. .. K compact

@ For the notion of H e-interch. limits
H C ZX e-interchanges limits with with X sequences can be replaced by
X if nets.
o o ® H C C(K) unif. bdd. then H
d(||p1 I'n’;” fn(Xn), I|,;n I'L“ fm(xn)) < € e-interchanges limits with K iff

whenever (x,) in X and (f,) in H ez ) = ultf, sup dF(). F() < e

and all limits involved do exist.

for each x € K and f € H'".
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Iterated limits vs. distances

Corollary |

For H C C(K) unif. bdd. the following properties hold:
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Iterated limits vs. distances

Corollary |

For H C C(K) unif. bdd. the following properties hold:

Q If H e-interchanges limits with K then osc(f) < 2¢ for every
feH”.
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Iterated limits vs. distances

Corollary |

For H C C(K) unif. bdd. the following properties hold:

© If H e-interchanges limits with K then osc(f) < 2e for every
feH”.

Q conversely, if osc(f) < ¢ for every f € H'”, then H
e-interchanges limits with K.
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Iterated limits vs. distances

Corollary |

For H C C(K) unif. bdd. the following properties hold:

© If H e-interchanges limits with K then osc(f) < 2e for every
feH”.

Q@ conversely, if osc(f) < e for every f € H'®, then H
e-interchanges limits with K.

Q if H c-interchanges limits with K, then d(H", C(K)) < e.
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Iterated limits vs. distances

Corollary |

For H C C(K) unif. bdd. the following properties hold:

© If H e-interchanges limits with K then osc(f) < 2e for every
feH”.

Q@ conversely, if osc(f) < e for every f € H'®, then H
e-interchanges limits with K.

© if H e-interchanges limits with K, then a(ﬁTp, C(K)) <e.
Q ifd(H™,C(K)) < e then H 2z-interchanges limits with X.
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Iterated limits vs. distances

Corollary |

For H C C(K) unif. bdd. the following properties hold:

© If H e-interchanges limits with K then osc(f) < 2e for every
feH”.

Q@ conversely, if osc(f) < e for every f € H'®, then H
e-interchanges limits with K.

© if H e-interchanges limits with K, then a(ﬁrp, C(K)) <e.
Q ifd(H™,C(K)) < e then H 2e-interchanges limits with X.

@ To study distances is equiv. to study iterated limits;

A

.
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

Iterated limits vs. distances

Corollary |

For H C C(K) unif. bdd. the following properties hold:

© If H e-interchanges limits with K then osc(f) < 2e for every
feH”.

Q@ conversely, if osc(f) < e for every f € H'®, then H
e-interchanges limits with K.

© if H e-interchanges limits with K, then a(ﬁrp, C(K)) <e.
Q ifd(H™,C(K)) < e then H 2e-interchanges limits with X.

o To study distances is equiv. to study iterated limits;

A

@ The above estimates are sharp.

.
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

e-interchanging limit property and convex hulls

Let Z be a compact convex subset of a normed space E, let K be
a set, and let H ¢ ZX. Then, for each e > 0, H e-interchanges
limits with K if, and only if, conv(H) e-interchanges limits with K.
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

e-interchanging limit property and convex hulls

Theorem

Let Z be a compact convex subset of a normed space E, let K be
a set, and let H ¢ ZX. Then, for each e > 0, H e-interchanges
limits with K if, and only if, conv(H) e-interchanges limits with K.

@ If H C C(K) is uniformly bounded then:

d(conv(H)™, C(K)) < 2d(H™, C(K)).

.
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Distances vs. oscillations
Primary results Oscillations vs. iterated limits

Iterated limits vs. distances

Iterated limits and convex hulls

e-interchanging limit property and convex hulls

Theorem

Let Z be a compact convex subset of a normed space E, let K be
a set, and let H ¢ ZX. Then, for each e > 0, H e-interchanges
limits with K if, and only if, conv(H) e-interchanges limits with K.

Theorem

@ If H C C(K) is uniformly bounded then:

d(conv(H) "™, C(K)) < 2d(H", C(K))-
@ If H c RX is uniformly bounded then:
d(conv(H)™, C(K)) < 5d(H"™, C(K)).

5=2x2+1

.
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Quantitative version of Krein’s theorem
Quantitative version of Grothendieck’s Theorem

Applications Quantitative version of Gantmacher’s theorem

Distances to spaces of affine continuous functions

If K is compact convex
subset of a l.c.s. and
f € A(K) then

d(f, C(K)) = d(f, A°(K)) .
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Quantitative version of Krein’s theorem
Quantitative version of Grothendieck’s Theorem
Quantitative version of Gantmacher’s theorem

Applications

Distances to spaces of affine continuous functions

@ It is easy to check that
d(f, A°(K)) > osc(f)/2.

If K is compact convex
subset of a l.c.s. and
f € A(K) then

d(f, C(K)) = d(f, A°(K)).
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Quantitative version of Krein’s theorem
Quantitative version of Grothendieck’s Theorem
Quantitative version of Gantmacher’s theorem

Applications

Distances to spaces of affine continuous functions

@ It is easy to check that
d(f, A°(K)) > osc(f)/2.

@ For x € Y, U, family of neighb.

If K is compact convex
subset of a l.c.s. and

f € A(K) then 8> osc(f) > inf =) (fy) — f(2))
d(f, C(K)) = d(f, A°(K)). > Ulngtx 525 f(y) — Usup |nf f(2)
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Quantitative version of Krein’s theorem
Applications Quantitative version of Grothendieck’s Theorem
pp Quantitative version of Gantmacher’s theorem

Distances to spaces of affine continuous functions

@ It is easy to check that

_ d(f, A°(K)) > osc(f)/2.

If K is compact convex . )
subset of 2 |.c.s. and @ For x € Y, Uy family of neighb.

f € A(K) then
d(f, C(K)) = d(f, A°(K)). > Ulngtx 525 f(y) — Usup |nf f(2)

d > osc(f) > Ulgi{ sup (fiy) — f(2))

\%

M\Oﬂ

fo(x) := sup inf f(z
2() = sup inf £(2) +

0
> inf —= = h
U'qufzﬁ 2 1(x)

Distance to spaces of continuous functions
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Quantitative version of Krein’s theorem
Applications Quantitative version of Grothendieck’s Theorem
PP Quantitative version of Gantmacher’s theorem

Distances to spaces of affine continuous functions

@ It is easy to check that

_ d(f, A°(K)) > osc(f)/2.

If K is compact convex . )
subset of 2 |.c.s. and @ For x € Y, U, family of neighb.
f € A(K) then

d > osc(f) > Ulgi{ sup (fiy) — f(2))

inf sup f(y) — sup |nf f(z)

d(f, C(K)) = d(f, AS(K)) . = ot sup ve
xy
Fol.s. convex (3]
f(x) := sup inf f(z) + é
2 o Uelg zeU 2
5 h affine > inf sup—g = ﬂ(X)

% UeUx yeu
T

1w s. concave

Distance to spaces of continuous functions
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Quantitative version of Krein’s theorem
Applications Quantitative version of Grothendieck’s Theorem
PP Quantitative version of Gantmacher’s theorem

Distances to spaces of affine continuous functions

@ It is easy to check that
d(f, A°(K)) > osc(f)/2.

If K is compact convex . Y 24 familv of neighb
subset of a l.c.s. and © For x €Y, Us family of neighb.
f K) th i —
€ A(K) then d > osc(f) > Ulgi{ sup (fiy) — f(2))
d(f, C(K)) = d(f, A°(K)). > inf supf(y)— sup |nf f(2)
UeUx yeu ve
fo 1. s. convex e
f(x) := sup inf f(z) + é
2 T UEZE zeU 2
Z i > inf sup—g =: fi(x)

% UeUx yeu
/‘\ @ Squeeze h between f, and f; and
If = hlleo < 8/2.

1w s. concave

Distance to spaces of continuous functions
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Quantitative version of Krein’s theorem
Quantitative version of Grothendieck’s Theorem
Quantitative version of Gantmacher’s theorem

Applications

Distances to spaces of affine continuous functions

If K is compact convex
subset of a l.c.s. and

f € A(K) then
Let X be a Banach space and let Bx+ be
d(f, C(K)) = d(f, A°(K)). the closed unit ball in the dual X* endowed

with the w*-topology. Let i : X — X™* and
Jj: X** — loo(Bx+) be the canonical
embedding. Then, for every x** € X** we
have:

f2l. 5. convex

I h affine d(X**7 I(X)) = d(j(X**)7 C(BX*)) .

/f*\

fi . s. concave
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Quantitative Krein's theorem

Corollary, [FHMZ05, Theorem 2]
Let X be a Banach space and let H C X be bdd. Then

AN —w* w*

d(conv(H)

Corollary, [Gra05, Theorem 5]

Let X be a Banach space and let H C X** be bdd. Then

*

d(conv(H)" , X) < 5d(H"", X).

B. Cascales, W. Marciszewski and M. Raja (Top. Appl. 2005) Distance to spaces of continuous functions



Quantitative version of Krein’s theorem
Quantitative version of Grothendieck’s Theorem

Applications Quantitative version of Gantmacher’s theorem

Theorem (Quantitative version of Grothendieck’s theorem)

For a compact space K, Bc(k)~ endowed with the w* topology
and H C C(K) uniformly bounded we have

BC(K)*

A c(k)) < dA" " C(Bewy)) < 4A(H™, C(K))

-t
T
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Theorem (Quantitative version of Grothendieck’s theorem)

For a compact space K, Bc(k)~ endowed with the w* topology
and H C C(K) uniformly bounded we have

BC(K)*

| C(Bey)) < 44(A™, C(K))

Ry

SAEY (k) < dF°

A —pK
° d(HR ,C(K)) =0« H is 7,-relatively compact in C(K).

~ REC(K)*
° d(HR o , C(Bc(k)+)) = 0 < H is weakly relatively compact
in C(K).
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Applications

Theorem (Quantitative version of Gantmacher’s theorem)

Let X and Y be Banach spaces, T : X — Y an operator and
T*:Y* — X* its adjoint operator. Then
1n ———w*

5d(T(Bx)" ,Y) <d(T*(By-)

w*

L X*) < 4d(TB)",Y).
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