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ANÁLISIS FUNCIONAL
Pinceladas de análisis

complejo y topoloǵıa en
análisis funcional

RESUMEN: En esta charla se presentarán, de forma asequible para alumnos
de licenciatura en matemáticas, los resultados del reciente trabajo titula-
do “A Bishop-Phelps-Bollobás type theorem for uniform algebras” (de
B. Cascales, A. J. Guirao and V. Kadets). Se prestará especial atención a
las ideas de análisis complejo (transformaciones conformes, teorema de Rie-
mann, álgebra del disco) y topoloǵıa (lema de Uryshon, fragmentabilidad)
que se utilizan para demostrar un resultado de optimización de operadores
entre espacios de Banach, a saber: “muchos operadores T entre espacios
de Banach pueden aproximarse por otros operadores S que alcanzan la
norma con la propiedad adicional de que los puntos donde T casi alcan-
za su norma y S alcanza la suya también están próximos”. Esta charla
estará asistida por cálculos con ordenador y se dará una muestra de cómo
el ordenador puede ayudar a conjeturar un resultado en análisis complejo y
funcional.

BERNARDO CASCALES
Universidad de Murcia

D́ıa y lugar:

Jueves 26 de Abril, 13:10 horas

Sala EULER



La motivación. . .

. . . “cerveza” esta noche. dónde iremos?



La nueva tradición que empezamos hoy. . .

http://webs.um.es/beca

. . . el que habla se presenta.

http://webs.um.es/beca


Un poco sobre GAF-UMU. . .

http://www.um.es/beca

http://www.um.es/beca


Un poco sobre GAF-UMU. . .

1 Crea y prepara material para las clases: Gabriel, José Manuel,
Salva, etc.

2 Investiga y publica. Logra buena financiación en proyectos
competitivos (prácticamente el 100 por 100 de lo que se pide)

3 Dirige tesis de Master, de Doctorado y trabajos para alumnos.

http://webs.um.es/mira

http://webs.um.es/mira


Un poco sobre GAF-UMU. . .

1 Crea y prepara material para las clases: Gabriel, José Manuel,
Salva, etc.

2 Investiga y publica. Logra buena financiación en proyectos
competitivos (prácticamente el 100 por 100 de lo que se pide)

3 Dirige tesis de Master, de Doctorado y trabajos para alumnos.

Hay proyectos regionales y europeos dirigidos por A. Avilés, A. J. Guirao, J.
Rodŕıguez, etc

G. Vera (IP) B. Cascales J. Orihuela (IP)
PB85-0494 PB95-1025 MTM2011-25377
PS88-0083 PB1998-0381
PB91-0575 BFM2002-0179

MTM2005-08379
MTM2008–05396

3 años últimos: 60 art́ıculos publicados (93% en revistas de impacto) + ≥ 27
art́ıculos actualmente enviados a publicación.



Un poco sobre GAF-UMU. . .

1 Crea y prepara material para las clases: Gabriel, José Manuel,
Salva, etc.

2 Investiga y publica. Logra buena financiación en proyectos
competitivos (prácticamente el 100 por 100 de lo que se pide)

3 Dirige tesis de Master, de Doctorado y trabajos para alumnos.

La interacción entre teoŕıa de la medida, topoloǵıa y análisis funcional.
Investigador Principal: José Orihuela

Desarrollamos nuevas técnicas:

I de teoŕıa de conjuntos y combinatoria en Análisis Funcional.

I de integración vectorial y de multifunciones en AF y aplicaciones.

I de topoloǵıa y medida en Análisis Funcional.

I de geometŕıa convexa finito e infinito dimensional y aplicaciones.

I de Análisis Funcional aplicadas a las Matemáticas Financieras.



Un poco sobre GAF-UMU. . .

1 Crea y prepara material para las clases: Gabriel, José Manuel,
Salva, etc.

2 Investiga y publica. Logra buena financiación en proyectos
competitivos (prácticamente el 100 por 100 de lo que se pide)

3 Dirige tesis de Master, de Doctorado y trabajos para alumnos.

Ahora mismo:

Tesis Doctorales Tesis Master (IP) Pre. . .
David Guerrero (México) Fulgencio López Antonio Pérez (Quinto)
Simone Ferrari (Italia) José Vidal Lúıs Carlos Garćıa (Cuarto)
Olena Kozhushkina (USA) Claudia Zepeda



GAF-UMU y alumnos: Carlos, Gonzalo, Isiah, Jesús, JuanRa, Ricardo, etc.
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ANÁLISIS FUNCIONAL

Ĺımites puntuales de
funciones holomorfas y el

Teorema de Runge

RESUMEN: Mientras que las funciones holomorfas suelen tener un “buen
comportamiento” cuando la convergencia es uniforme o uniforme sobre com-
pactos, surgen patoloǵıas cuando la convergencia es sólo puntual. Estudiamos
dichas patoloǵıas con el Teorema de Runge y se añaden algunas condiciones
para obtener una buena convergencia.

RICARDO ALCAÑIZ FRUTOS
CARLOS ALBALADEJO PADILLA

Universidad de Murcia

D́ıa y lugar:

Lunes 23 de Abril, 16:00 horas

Sala EULER (Planta baja)



GAF-UMU y la Red de Análisis Funcional y Aplicacions



GAF-UMU y la Escuela de la Red de Análisis Funcional y Aplicacions
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Gracias a mis colegas y alumnos por el trabajo en el GAF-UMU, con mención
muy especial para mi amigo Pepe Orihuela.

Metrizability of precompact subsets in (LF)-spaces 

by 

B.Cascales and J.Orihuela 

this paper we prove that every precompact subset in any (LF)-space 

has a metrizable completion. As a consequence every (LF)-space is angelic and 

in this way the answer to a question posed by K. Floret , [ 3] , is given. Some 

contributions to the general problem of regularity i 'n inductive limits posed 

by K.Floret,[3], are also given. Particularly, extensions of well known results 

of H.Neuss and M. Valdivia are provided in the general setting of ( LF )-spaces. 

It should also be noted that our results are true for inductive 1 imi ts of an 

increasing sequence of metrizable spaces. 

1. Introduction and notations. 

The vector spaces we shall use here are defined over the field IK of real or 

complex numbers. The word "space" means "separated locally convex space" 

(briefly 1. c. s.). For a space E [ t, J we denote by E' its topological dual and 
A A 

by E [ ] its completion. If A is a bounded and absolutely convex subset in a 

space E, EA is the linear hull of A endowed with the norm given by the gauge 

of A. A is called a Banach disc when EA is a Banach space.A sequence (subset) 

is said to be Mackey-convergent (Mackey-precompact) if there is a bounded and 

absolutely convex subset A of E such that the sequence (subset) is contained 

in EA and convergent (precompact) in this space. If A can be taken a Banach 

disc in the former definition the sequence (subset) is called fast convergent 

(fast precompact) • A space E has the Mackey convergence property if every 

convergent sequence is Mackey-convergent and it has the strict t-1ackey property 

for precompact if, given any precompact subset B of E, there is a bounded and 

absolutely convex subset A of E such that B is contained in A and the topology 

of E A coincides on B with the topology of E. Standard references for notations 

and concepts are [5] and [6] . 

Let E be the union of an increasing sequence E1 E2 c...-- ••• c..__. E11 c____.. 

of spaces. Let 4:nbe the topology of En and Ent1 continuous, 

n=1, 2, ... We denote by E ['t] = lim En [ the inductive limit of the sequence -{En[Q:n]: n=1,2, ..• }. If every En['-th] is metrizable we shall say that E[!:r-J is 

a LMet-space. Let us recall that all the spaces we are dealing with are Hausdorff. 

Let E be a space and 9(E) the family of all the parts of E. E is a quasi-

Suslin space, [10], if there is a mapping T from a Polish space X into 1(E) 

satisfying 
( a) u { Tx : x !: X } = E 



El primer art́ıculo con Pepe en la revista.

Proceedings of tire Royal Society of Edinburgh, lOlA, 000-000, 1986 

Metraizability of precompact subsets in (LF)-spaces 

B. Cascales and J. Orihuela 
Departamento de Amilisis Matematico, Facultad de Mathematicas, Universidad 

de Murica, 30.001-Murcia, Spain 

(MS received 3 December 1985. Revised MS received 17 March 1986) 

Synopsis 
In this paper we prove that every precompact subset in any (LF)-space has a metrizable completion. 
As a consequence every (LF)-space is angelic and in this way the answer to a question posed by K. F. 
Floret [3] is given. Some contributions to the general problem of regularity in inductive limits posed 
by K. Floret [3] are also given. Particularly, extensions of well-known results of H. Neuss and M. 
Valdivia are provided in the general setting of (LF)-spaces. It should also be noted that our results 
hold for inductive limits of an increasing sequence of metrizable spaces. 

1. Introduction and notations 

The vector spaces we shall use here are defined over the field IK of real or 
complex numgers. The word "space" means "separated locally convex space" 
(briefly l.c.s.). For a space E[y] we denote byE' its topological dual and by E[y] 
its completion. If A is a bounded and absolutely convex subset in a space E, EA is 
the linear hull of A endowed with the norm given by the gauge of A. A is called a 
Banach disc when EA is a Banach space. A sequence (subset) is said to be 
Mackey-convergent (Mackey-precompact) if there is a bounded and absolutely 
convex subset A of E scuh that the sequence (subset) is contained in EA and 
convergent (precompact) in this space. If A can be taken to be a Banach disc in 
the former definition, the sequence (subset) is called fast convergent (fast 
precompact). A space E has the Mackey convergence property if every 
convergent sequence is Mackey-convergent and it has the strict Mackey property 
for precompactness if, given any precompact subset B of E, there is a bounded 
and absolutely convex subset A of E such that B is contained in A and the 
topology of EA coincides on B with the topology of E. Standard references for 
notations and concepts are [5] and [6]. 

Let E be the union of an increasing sequence E1 4 Ez 4 ... 4 E,. 4 ... of 
spaces. Let y,. be the topology of E,. and E,.[y,.] 4 En+ 1[y,.+l] continuous, 
n = 1, 2, ... We denote by E[y] =lim E,.[y,.] the inductive limit of the sequence 

{E,.[yn]: n = 1, 2, ... }. If every En[Yn] is metrizable we shall say that E[y] is a 
LMet-space. Let us recall that all the spaces we are dealing with are Hausdorff. 
Let E be a space and rP(E) the family of all the parts of E. E is a quasi-Sus/in 
space [10] if there is a mapping T from a Polish space X into rP(E) satisfying 

(a) U{Tx:xEX}=E 
(b) If (x,.) is a sequence in X converging to x and if z,. belongs to Tx,. for every 

positive integer n, then the sequence (zn) has an adherent point in E 
belonging to Tx. 

1 



Nuestros pecados de juventud vistos por otros.
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Descriptive Topology in Selected Topics of Functional Analysis

Developments in Mathematics
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in Selected Topics 
of Functional Analysis
  
 

Jerzy Kąkol
Wiesław Kubiś
Manuel López-Pellicer

Mathematics  

DEVM
24

D
escriptive Topology in Selected Topics of Functional Analysis 

A large mathematical community throughout the world actively works in functional 
analysis and uses profound techniques from topology. As the fi rst monograph to ap-
proach the topic of topological vector spaces from the perspective of descriptive topol-
ogy, this work provides also new insights into the connections between the topological 
properties of linear function spaces and their role in functional analysis. 

Descriptive Topology in Selected Topics of Functional Analysis is a self-contained volume 
that applies recent developments and classical results in descriptive topology to study 
the classes of infi nite-dimensional topological vector spaces that appear in functional 
analysis. Such spaces include Fréchet spaces, LF-spaces and their duals, and the space 
of continuous real-valued functions C(X) on a completely regular Hausdorff  space X, 
to name a few. Th ese vector spaces appear in distribution theory, diff erential equations, 
complex analysis, and various other areas of functional analysis.

Written by three experts in the fi eld, this book is a treasure trove for researchers and 
graduate students studying the interplay among the areas of point-set and descriptive 
topology, modern analysis, set theory, topological vector spaces and Banach spaces, and 
continuous function spaces.  Moreover, it will serve as a reference for present and future 
work done in this area and could serve as a valuable supplement to advanced graduate 
courses in functional analysis, set-theoretic topology, or the theory of function spaces.

9 7 8 1 4 6 1 4 0 5 2 8 3

ISBN 978-1-4614-0528-3



El penúltimo art́ıculo con Pepe aún sin acabar.



PEPE HAY QUE TERMINARLO YA!.

A biased view of topology as a tool in functional
analysis

B. Cascales and J. Orihuela

Abstract Each chapter should be preceded by an abstract (10–15 lines long) that summarizes the content.
The abstract will appear online at www.SpringerLink.com and be available with unrestricted access. This
allows unregistered users to read the abstract as a teaser for the complete chapter. As a general rule the
abstracts will not appear in the printed version of your book unless it is the style of your particular book
or that of the series to which your book belongs.

Please use the ’starred’ version of the new Springer abstract command for typesetting the text of
the online abstracts (cf. source file of this chapter template abstract) and include them with the source
files of your manuscript. Use the plain abstract command if the abstract is also to appear in the printed
version of the book.

1 Introduction

1.1 Notation and terminology

Most of our notation and terminology are standard, otherwise it is either explained here or when needed:
unexplained concepts and terminology can be found in our standard references for Banach spaces [2, 4, 7]
and topology [3, 8]. By letters E, K, T, X, etc. we denote sets and sometimes topological spaces. Our
topological spaces are assumed to be completely regular.

All vector spaces E that we consider in this paper are assumed to be real. Sometimes E is a
normed space with the norm �·�. Given a subset S of a vector space, we write co(S) and span(S) to
denote, respectively, the convex and the linear hull of S. In the normed space (E, �·�) the unit ball
{x ∈ E : �x� ≤ 1} is denoted by BE . Thus the unit ball of its topological dual E∗ is BE∗ . If S is a subset
of E∗, then σ(E, S) denotes the weakest topology for E that makes each member of S continuous, or
equivalently, the topology of pointwise convergence on S. Dually, if S is a subset of E, then σ(E∗, S) is
the topology for E∗ of pointwise convergence on S. In particular σ(E, E∗) and σ(E∗, E) are the weak (w)
and weak∗ (w∗) topologies respectively. Of course, σ(E, S) is always a locally convex topology and it is

Hausdorff if, and only if, E∗ = span S
w∗

and similarly for σ(E∗, S). Given x∗ ∈ E∗ and x ∈ E, we write
�x∗, x� and x∗(x) for the evaluation of x∗ at x. If x ∈ E and δ > 0 we denote by B(x, δ) (or B[x, δ]) the
open (resp. closed) ball centered at x of radius δ. Given a nonempty set X, �∞(X) stands for the Banach

B. Cascales e-mail: beca@um.es · J. Orihuela e-mail: joseori@um.es

Departamento de Matemáticas. Universidad de Murcia. 30100 Espinardo. Murcia. Spain
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Bishop-Phelps-Bollobás property

Credit to co-authors and a few papers by others
Framework and historical comments
Our result
Concluding remarks

A Bishop-Phelps-Bollobás type theorem for
uniform algebras

B. Cascales Análisis complejo y topoloǵıa en AF



Bishop-Phelps-Bollobás property

Credit to co-authors and a few papers by others
Framework and historical comments
Our result
Concluding remarks

What kind of problem are we going to talk about?

A BISHOP-PHELPS-BOLLOBÁS TYPE THEOREM FOR UNIFORM
ALGEBRAS

B. CASCALES, A. J. GUIRAO AND V. KADETS

ABSTRACT. This paper is devoted to showing that Asplund operators with range
in a uniform Banach algebra have the Bishop-Phelps-Bollobás property, i.e., they
are approximated by norm attaining Asplund operators at the same time that a
point where the approximated operator almost attains its norm is approximated
by a point at which the approximating operator attains it. To prove this result
we establish a Uryshon type lemma producing peak complex-valued functions
in uniform algebras that are small outside a given open set and whose image is
inside a symmetric rhombus with main diagonal [0, 1] and small height.

1. INTRODUCTION

Mathematical optimization is associated to maximizing or minimizing real func-
tions. James’s compactness theorem [17] and Bishop-Pehlps’s theorem [5] are two
landmark results along this line in functional analysis. The former characterizes re-
flexive Banach spaces X as those for which continuous linear functionals x∗ ∈ X∗

attain their norm in the unit sphere SX . The latter establishes that for any Ba-
nach space X every continuous linear functional x∗ ∈ X∗ can be approximated
(in norm) by linear functionals that attain the norm in SX . This paper is concerned
with the study of a strengthening of Bishop-Phelps’s theorem that mixes ideas of
Bollobás [6] –see Theorem 3.1 here– and Lindenstrauss [21] –who initiated the
study of the Bishop-Phelps property for bounded operators between Banach spaces.
Our starting point is the following definition brought in by Acosta, Aron, Garcı́a
and Maestre in 2008:

Definition 1 ([1]). A pair of Banach spaces (X, Y ) is said to have the Bishop-
Phelps-Bollobás property (BPBp for short) if for any ε > 0 there exists a δ(ε) > 0,
such that for all T ∈ SL(X,Y ), if x0 ∈ SX is such that �T (x0)� > 1 − δ(ε), then
there exist u0 ∈ SX and �T ∈ SL(X,Y ) satisfying

��� �T (u0)
��� = 1, �x0 − u0� < ε and

���T − �T
��� < ε.

A good number of papers regarding BPBp have been written during the last
years, as for instance [3, 7, 8]. Very recently, a general result has been proved
in [2], that in particular says that pairs of the form (X, C(K)) do have the BPBp

Date: VERSION: 19th April de 2012.
2010 Mathematics Subject Classification. Primary: 46B20, 46E25 Secondary:47B07,47B48.
Key words and phrases. Bishop-Phelps, Bollobás, Asplund operator, norm attaining, uniform

Banach algebra, peak functions, Uryshon lemma.
This research was partially supported by MEC and FEDER projects MTM2008-05396 and

MTM2011-25377. The research of the second named author was also partially supported by Gener-
alitat Valenciana (GV/2010/036), and by Universidad Politécnica de Valencia (project PAID-06-09-
2829).
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Bishop-Phelps-Bollobás property

Credit to co-authors and a few papers by others
Framework and historical comments
Our result
Concluding remarks

The problem for x∗ : X → R form and T : X → Y operator

‖x∗‖= sup{|x∗(x)| : ‖x‖= 1} not always
= max{|x∗(x)| : ‖x‖= 1}

‖T‖= sup{‖T (x)‖ : ‖x‖= 1} not always
= max{‖T (x)‖ : ‖x‖= 1}

What can do it about it?

Our paper is devoted to showing that Asplund operators with range in a
uniform Banach algebra have the Bishop-Phelps-Bollobás property, i.e., they
are approximated by norm attaining Asplund operators at the same time that a
point where the approximated operator almost attains its norm is approximated
by a point at which the approximating operator attains it. To prove this result
we establish a Uryshon type lemma producing peak complex-valued functions in
uniform algebras that are small outside a given open set and whose image is
inside a symmetric rhombus with main diagonal [0,1] and small height.
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Framework and historical comments
Our result
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Bishop-Phelps theorem

Theorem (Bishop-Phelps, 1961)

If X is a Banach, then NAX ∗ = X ∗.

RESEARCH ANNOUNCEMENTS 
The purpose of this department is to provide early announcement of significant 

new results, with some indications of proof. Although ordinarily a research announce-
ment should be a brief summary of a paper to be published in full elsewhere, papers 
giving complete proofs of results of exceptional interest are also solicited. 

A PROOF THAT EVERY BANACH SPACE IS 
SUBREFLEXIVE 

BY ERRETT BISHOP AND R. R. PHELPS 

Communicated by Mahlon M. Day, August 19, 1960 

A real or complex normed space is subreflexive if those f unctionals 
which attain their supremum on the unit sphere S of E are norm-
dense in E*, i.e., if for each ƒ in £ * and each e > 0 there exist g in 
E* and x in S such that \g(x)\ =\\g\\ and ||/—g|| <!. There exist in-
complete normed spaces which are not subreflexive [ l ] 1 as well as 
incomplete spaces which are subreflexive (e.g., a dense subspace of a 
Hubert space). I t is evident that every reflexive Banach space is sub-
reflexive. The theorem mentioned in the title will be proved for real 
Banach spaces; the result for complex spaces follows from this by 
considering the spaces over the real field and using the known isome-
try between complex functionals and the real functionals defined by 
their real parts. 

We first cite a lemma which states, roughly, that if the hyperplanes 
determined by two functionals ƒ and g (of norm one) are nearly 
parallel, then one of ||/—g||, | | /+g | | must be small. 

LEMMA. Suppose E is a normed space and !>0. If ƒ, g£J3*, ||/|| = 1 
= ||g||, are such that \g(x)\ ^ e / 2 whenever fix) = 0 and | | # | | ^ 1 , then 
Wf-iHeor\\f+g\\£e. 

A proof of the lemma may be found in [2, Lemma 3.1]. To prove 
the theorem suppose ƒG-E* and !>0. We may assume that ||/|| = 1; 
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1 An easily described example has been suggested by Y. Katznelson: Let E be 
the space of all polynomials on [0, l ] , with the supremum norm. (The example in [l] 
shows clearly how the method of proof given below fails without the assumption of 
completeness.) 
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Bishop-Phelps-Bollobás property

Credit to co-authors and a few papers by others
Framework and historical comments
Our result
Concluding remarks

The Bishop-Phelps property for operators

Definition

An operator T : X → Y is
norm attaining if there
exists x0 ∈ X , ‖x0‖= 1,
such that ‖T (x0)‖= ‖T‖.

Definition (Lindenstrauss)

(X ,Y ) has the
Bishop-Phelps Property
(BPp) if every operator
T : X → Y can be
uniformly approximated by
norm attaining operators.

1 (X ,K) has BPp for every X
Bishop-Phelps (1961);

2 {T ∈ L(X ;Y ) : T ∗∗ ∈ NA(X ∗∗;Y ∗∗)}=
L(X ;Y ) for every pair of Banach spaces
X and Y , Lindenstrauss (1963);

3 X with RNP, then (X ,Y ) has BPp for
every Y , Bourgain (1977);

4 there are spaces X , Y and Z such that
(X ,C([0,1])), (Y , `p) (1 < p < ∞) and
(Z ,L1([0,1])) fail BPp, Schachermayer
(1983), Gowers (1990) and Acosta
(1999);

5 (C(K),C(S)) has BPp for all compact
spaces K ,S , Johnson and Wolfe, (1979).

6 (L1([0,1]),L∞([0,1])) has BPp,
Finet-Payá (1998),
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Bollobás observation

AN EXTENSION TO THE THEOREM OF BISHOP AND
PHELPS

BELA BOLLOBAS

Bishop and Phelps proved in [1] that every real or complex Banach space is
subreflexive, that is the functionals (real or complex) which attain their supremum
on the unit sphere of the space are dense in the dual space. We shall sharpen this
result and then apply it to a problem about the numerical range of an operator.

Denote by S and S' the unit spheres in a Banach space B and its dual space B',
respectively.

THEOREM 1. Suppose xeS,fe S' and \f(x)~ 1| < e2/2 (0 < e < £). Then there
exist yeS and geS' such that g(y) = 1, \\f— g\\ ^ e and \\x—y\\ < e+e2.

Proof. Our first proof was rather complicated but we discovered later that a
slight improvement of the proof in [1] gives this stronger result. This "proof" is
presented here.

Naturally it is sufficient to verify the theorem for real Banach spaces and real
functionals.

It is actually proved, only not explicitly stated, in [1] that ifz e S,/e S' and/(z) > 0
then there exists g e S' which attains its supremum on the unit sphere at some point
xoeS,

2 + e
\\f-g\\ ^e and \\xo-z\\ ^ ^y - r

Naturally here 0 ^/(x0—z) ^ 1—/(z). So putting x = z, y = x0 we know that
there are y e S, g e S' such that g(y) = 1,

2 + e e2

| | / -g | | <6 and | , - , | < £ ( 1 _ ( £ 2 / 2 ) ) - j - < . + «».

Remark. Theorem 1 is best possible in the following sense. For any 0 < e < 1
there exist a Banach space B, point xeS and functional feS' such that
f(x) = 1 - (e2/2) but if y e S, g e S' and g(y) = 1 then either | | / - g | | ^ e or \\x-y\\ ^ e.

Proof. Turn R2 into a real Banach space by taking the following unit ball:

{(a,b): - 1 ^a + (l-e)b^ 1, - l ^ b ^ l }

Let f{a,b) = (e/2)a+(l-(e2/2))b and take x = (0, 1). Then | | / | | = 1,
f(x) = 1 —(e2/2) and it is immediate that if geS', \\f— g\\ < e then g must attain its
supremum at the same point as/, at (e, 1), which is of distance £ from x.

Let T be a bounded linear operator in a complex Banach space B. The numerical
range of T is defined as V(T) = {f(Tx): xeS,feS',f(x) = 1} (see e.g. [2]).
Evidently V(T) £ V(T') where T is the adjoint of T, and it is known that this

Received 17 November, 1969.
[BULL. LONDON MATH. SOC, 2 (1970), 181-182]
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A different way of writing BPB

AN EXTENSION TO THE THEOREM OF BISHOP AND
PHELPS

BELA BOLLOBAS

Bishop and Phelps proved in [1] that every real or complex Banach space is
subreflexive, that is the functionals (real or complex) which attain their supremum
on the unit sphere of the space are dense in the dual space. We shall sharpen this
result and then apply it to a problem about the numerical range of an operator.

Denote by S and S' the unit spheres in a Banach space B and its dual space B',
respectively.

THEOREM 1. Suppose xeS,fe S' and \f(x)~ 1| < e2/2 (0 < e < £). Then there
exist yeS and geS' such that g(y) = 1, \\f— g\\ ^ e and \\x—y\\ < e+e2.

Proof. Our first proof was rather complicated but we discovered later that a
slight improvement of the proof in [1] gives this stronger result. This "proof" is
presented here.

Naturally it is sufficient to verify the theorem for real Banach spaces and real
functionals.

It is actually proved, only not explicitly stated, in [1] that ifz e S,/e S' and/(z) > 0
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2 + e
\\f-g\\ ^e and \\xo-z\\ ^ ^y - r

Naturally here 0 ^/(x0—z) ^ 1—/(z). So putting x = z, y = x0 we know that
there are y e S, g e S' such that g(y) = 1,

2 + e e2

| | / -g | | <6 and | , - , | < £ ( 1 _ ( £ 2 / 2 ) ) - j - < . + «».

Remark. Theorem 1 is best possible in the following sense. For any 0 < e < 1
there exist a Banach space B, point xeS and functional feS' such that
f(x) = 1 - (e2/2) but if y e S, g e S' and g(y) = 1 then either | | / - g | | ^ e or \\x-y\\ ^ e.

Proof. Turn R2 into a real Banach space by taking the following unit ball:

{(a,b): - 1 ^a + (l-e)b^ 1, - l ^ b ^ l }

Let f{a,b) = (e/2)a+(l-(e2/2))b and take x = (0, 1). Then | | / | | = 1,
f(x) = 1 —(e2/2) and it is immediate that if geS', \\f— g\\ < e then g must attain its
supremum at the same point as/, at (e, 1), which is of distance £ from x.

Let T be a bounded linear operator in a complex Banach space B. The numerical
range of T is defined as V(T) = {f(Tx): xeS,feS',f(x) = 1} (see e.g. [2]).
Evidently V(T) £ V(T') where T is the adjoint of T, and it is known that this

Received 17 November, 1969.
[BULL. LONDON MATH. SOC, 2 (1970), 181-182]

Corollary. . . the way is oftentimes presented

Given 1
2 > ε > 0, if x0 ∈ SX and x∗ ∈ SX ∗ are such that

|x∗(x0)|> 1− ε2

4
,

then there are u0 ∈ SX and y∗ ∈ SX ∗ such that

|y∗(u0)|= 1,‖x0−u0‖< ε and ‖x∗−y∗‖< ε.
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Bishop-Phelps-Bollobás Property for operators

Definition: Acosta, Aron, Garćıa and Maestre, 2008

(X ,Y ) is said to have the
Bishop-Phelps-Bollobás property (BPBP)
if for any ε > 0 there are η(ε) > 0 such
that for all T ∈ SL(X ,Y ), if x0 ∈ SX is
such that

‖T (x0)‖> 1−η(ε),

then there are u0 ∈ SX , S ∈ SL(X ,Y ) with

‖S(u0)‖= 1

and

‖x0−u0‖< ε and ‖T −S‖< ε.

1 Y has certain almost-biorthogonal
system (X ,Y ) has BPBp any X ;

2 (`1,Y ) BPBp is characterized
through a condition called AHSP:
it holds for Y finite dimensional,
uniformly convex, Y = L1(µ) for a
σ -finite measure or Y = C(K);

3 there is pair (`1,X ) failing BPBp,
but having BPp;

4 (`∞
n ,Y ) has BPBp Y uniformly

convex no hope for c0:
η(ε) = η(n,ε)→ 1 with n→ ∞.

PROBLEM?

No Y infinite dimensional was
known s.t. (c0,Y ) has BPBP.
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Our main result

Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let A⊂ C (K ) be a uniform algebra and T : X → A be an Asplund
operator with ‖T‖= 1. Suppose that 0 < ε <

√
2 and x0 ∈ SX are

such that ‖Tx0‖> 1− ε2

2 . Then there exist u0 ∈ SX and an

Asplund operator T̃ ∈ SL(X ,A) satisfying that

‖T̃ u0‖= 1,‖x0−u0‖ ≤ ε and ‖T − T̃‖< 2ε.

This is not what you promised: understandable!

Forget about A and bear in mind:

the Fourier transform ̂ : L1(Rn)→ C0(Rn) ;

or, Tϕ : A
(
D
)
→ A

(
D
)

where Tϕ (f ) = f ◦ϕ for some ϕ ∈ A
(
D
)
;

or, Tϕ : H∞(D)→ H∞(D) where Tϕ (f ) = f ◦ϕ for some ϕ ∈ H∞(D).
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The black box. . . fragmentability. . . I won’t speak about it

Asplund spaces: Namioka, Phelps and Stegall

Let X be a Banach space. Then the following conditions are equivalent:

(i) X is an Asplund space, i.e., whenever f is a convex continuous function
defined on an open convex subset U of X , the set of all points of U
where f is Fréchet differentiable is a dense Gδ -subset of U.

(ii) every w∗-compact subset of (X ∗,w∗) is fragmented by the norm;

(iii) each separable subspace of X has separable dual;

(iv) X ∗ has the Radon-Nikodým property.
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An idea of the proof for A = C (K )

Theorem (R. M. Aron, O. Kozhushkina and B. C. 2011)

Let T : X → C(K) be an Asplund operator with ‖T‖= 1. Suppose that 0 < ε <
√

2 and x0 ∈ SX are such that

‖Tx0‖> 1− ε2

2 . Then there exist u0 ∈ SX and an Asplund operator T̃ ∈ SL(X ,C(K)) satisfying that

‖T̃u0‖= 1,‖x0−u0‖ ≤ ε and ‖T − T̃‖< 2ε.

1 Black box provides a suitable open set U ⊂ K and y∗ ∈ SX ∗ with

1 = |y∗(u0)|= ‖u0‖ and ‖x0−u0‖< ε.

2 Uryshon’s lemma that applied to an arbitrary t0 ∈ U produces a function
f ∈ C(K) satisfying

f (t0) = ‖f ‖∞ = 1, f (K)⊂ [0,1] and supp(f )⊂ U.

3 T̃ is explicitly defined by

T̃ (x)(t) = f (t) ·y∗(x) + (1− f (t)) ·T (x)(t), x ∈ X , t ∈ K ,

4 The suitability of U is used to prove that ‖T − T̃‖< 2ε.
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2 B. CASCALES, A. J. GUIRAO AND V. KADETS

whenever X is an Asplund space and C(K) is the space of continuous functions
defined on a compact Hausdorff space K: this result provided the first examples of
pairs of the kind (c0, Y ) with BPBp for Y infinite dimensional Banach space. Our
aim here is to extend and sharpen the results of [2] and prove the following:

Theorem 3.6. Let A ⊂ C(K) be a uniform algebra and T : X → A be an Asplund
operator with �T� = 1. Suppose that 0 < ε <

√
2 and x0 ∈ SX are such that

�Tx0� > 1− ε2

2 . Then there exist u0 ∈ SX and an Asplund operator �T ∈ SL(X,A)

satisfying that

� �Tu0� = 1, �x0 − u0� ≤ ε and �T − �T� < 2ε.

For A = C(K) the above result was proved in [2, Theorem 2.4] with worse esti-
mates. The key points for the known proof when A = C(K) were, on one hand,
the asplundness of T hidden in Lemma 2.3 of [2] that led to a suitable open set
U ⊂ K and, on the other hand, the Uryshon’s lemma that applied to an arbitrary
t0 ∈ U produces a function f ∈ C(K) satisfying

f(t0) = �f�∞ = 1, f(K) ⊂ [0, 1] and supp(f) ⊂ U.

With all this setting, �T was explicitly defined by

�T (x)(t) = f(t) · y∗(x) + (1 − f(t)) · T (x)(t), x ∈ X, t ∈ K, (1.1)

where y∗ ∈ SX∗ was chosen satisfying, amongst other things, 1 = |y∗(u0)| =
�u0� and �x0−u0� < ε. The provisos about y∗ and f were used then to prove that
T and �T were close and that 1 = � �T� = � �Tu0�. Solely with the details above, the
reader should be able to prove indeed that 1 = � �T� = � �Tu0� but he or she will
have to make use of the fact that f(K) ⊂ [0, 1]. Once this is said, it becomes clear
that the arguments above cannot work for a proof of Theorem 3.6 for a general
uniform algebra A ⊂ C(K). Certainly, A could be too rigid (for instance the disk
algebra) to allow the construction of f ∈ A peaking at t0 and with f(K) ⊂ [0, 1].
To overcome these difficulties we prove Lemma 2.8 below about the existence of
peak functions f ∈ A that are small outside an open set and with f(K) contained
in a small rhombus

Rε := {z ∈ C : |Re(z) − 1/2| + (1/
√
ε)|Im(z)| ≤ 1/2}

with main diagonal [0, 1], that in its turn is contained in the Stolz’s domain

Stε = {z ∈ D : |z| + (1 − ε)|1 − z| ≤ 1}.

Lemma 2.8. Let A ⊂ C(K) be a unital uniform algebra and Γ0 its Choquet
boundary. Then, for every open set U ⊂ K with U ∩ Γ0 �= ∅ and 0 < ε < 1, there
exist f ∈ A and t0 ∈ U ∩ Γ0 such that f(t0) = �f�∞ = 1, |f(t)| < ε for every
t ∈ K \ U and f(K) ⊂ Rε. In particular,

|f(t)| + (1 − ε)|1 − f(t)| ≤ 1, for all t ∈ K. (2.8)

With this in mind we appeal at the full power of Lemma 2.3 of [2], that is also
suited for a boundary instead of K, to produce U and then modify the definition of
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suited for a boundary instead of K, to produce U and then modify the definition of
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Our key Uryshon type lemma for A
(
D
)

2 B. CASCALES, A. J. GUIRAO AND V. KADETS

whenever X is an Asplund space and C(K) is the space of continuous functions
defined on a compact Hausdorff space K: this result provided the first examples of
pairs of the kind (c0, Y ) with BPBp for Y infinite dimensional Banach space. Our
aim here is to extend and sharpen the results of [2] and prove the following:

Theorem 3.6. Let A ⊂ C(K) be a uniform algebra and T : X → A be an Asplund
operator with �T� = 1. Suppose that 0 < ε <

√
2 and x0 ∈ SX are such that

�Tx0� > 1− ε2

2 . Then there exist u0 ∈ SX and an Asplund operator �T ∈ SL(X,A)

satisfying that

� �Tu0� = 1, �x0 − u0� ≤ ε and �T − �T� < 2ε.

For A = C(K) the above result was proved in [2, Theorem 2.4] with worse esti-
mates. The key points for the known proof when A = C(K) were, on one hand,
the asplundness of T hidden in Lemma 2.3 of [2] that led to a suitable open set
U ⊂ K and, on the other hand, the Uryshon’s lemma that applied to an arbitrary
t0 ∈ U produces a function f ∈ C(K) satisfying

f(t0) = �f�∞ = 1, f(K) ⊂ [0, 1] and supp(f) ⊂ U.

With all this setting, �T was explicitly defined by

�T (x)(t) = f(t) · y∗(x) + (1 − f(t)) · T (x)(t), x ∈ X, t ∈ K, (1.1)

where y∗ ∈ SX∗ was chosen satisfying, amongst other things, 1 = |y∗(u0)| =
�u0� and �x0−u0� < ε. The provisos about y∗ and f were used then to prove that
T and �T were close and that 1 = � �T� = � �Tu0�. Solely with the details above, the
reader should be able to prove indeed that 1 = � �T� = � �Tu0� but he or she will
have to make use of the fact that f(K) ⊂ [0, 1]. Once this is said, it becomes clear
that the arguments above cannot work for a proof of Theorem 3.6 for a general
uniform algebra A ⊂ C(K). Certainly, A could be too rigid (for instance the disk
algebra) to allow the construction of f ∈ A peaking at t0 and with f(K) ⊂ [0, 1].
To overcome these difficulties we prove Lemma 2.8 below about the existence of
peak functions f ∈ A that are small outside an open set and with f(K) contained
in a small rhombus

Rε := {z ∈ C : |Re(z) − 1/2| + (1/
√
ε)|Im(z)| ≤ 1/2}

with main diagonal [0, 1], that in its turn is contained in the Stolz’s domain

Stε = {z ∈ D : |z| + (1 − ε)|1 − z| ≤ 1}.

Lemma 2.8. Let A ⊂ C(K) be a unital uniform algebra and Γ0 its Choquet
boundary. Then, for every open set U ⊂ K with U ∩ Γ0 �= ∅ and 0 < ε < 1, there
exist f ∈ A and t0 ∈ U ∩ Γ0 such that f(t0) = �f�∞ = 1, |f(t)| < ε for every
t ∈ K \ U and f(K) ⊂ Rε. In particular,

|f(t)| + (1 − ε)|1 − f(t)| ≤ 1, for all t ∈ K. (2.8)

With this in mind we appeal at the full power of Lemma 2.3 of [2], that is also
suited for a boundary instead of K, to produce U and then modify the definition of
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Our Uryshon type lemma is suited for calculations with a computer

A BISHOP-PHELPS-BOLLOBÁS TYPE THEOREM FOR UNIFORM ALGEBRAS 5

Proof. Observe first that ı(U) is a w∗-open set in ı(K). Therefore, there exists a
w∗-open set V ⊂ S such that ı(U) = V ∩ ı(K). Fix x ∈ U ∩ Γ0. Since δx is
an extreme point of the w∗-compact set S and δx belongs to V ⊂ S, Choquet’s
lemma ensures the existence of f0 ∈ A and r ∈ R such that the w∗-slice of S,
{x∗ ∈ S : Re x∗(f0) > r}, is included into V ∩ S and contains δx. In particular,
Re f0(x) > r and Re f0(t) ≤ r for all t ∈ K \ U .

Note that maxt∈K Re f0(t) =: m > r and consider g(t) := ef0(t) for t ∈ K.
It is clear that g ∈ A –see Lemma 2.3–, g(K) ⊂ emD and that g maps K \ U
into erD, i.e., strictly inside of emD. Since Γ0 is a boundary for A, there exists
t0 ∈ U ∩ Γ0 such that |g(t0)| = em. Now, take n ∈ N such that en(r−m) < δ.
Then, the function defined by

f(t) =

�
g(t)

g(t0)

�n

, for t ∈ K,

is the one that we need. �
The proof of the following lemma is inspired by [18, Lemma 1.4]. For a subset

W ⊂ C write
�d(W, [0, 1]) := sup

z∈W
inf

s∈[0,1]
|z − s|.

Lemma 2.2. Let A ⊂ C(K) be as in the previous lemma. Then, for every open set
U ⊂ K with U ∩ Γ0 �= ∅ and δ > 0, there exist g ∈ A and t0 ∈ U ∩ Γ0 such that
g(t0) = �g�∞ = 1, |g(t)| < δ for every t ∈ K \ U and

�d(g(K), [0, 1]) ≤ δ.

Proof. Let us fix 0 < η < min{δ/6, 1/2} and n ∈ N, n > 2
η . Let us define U1 :=

U . We shall construct inductively a collection of points {tj}n
j=1, a decreasing

finite sequence {Uj}n+1
j=1 of open subsets of U , tj ∈ Uj+1 ∩ Γ0, and functions

{fj}n
j=1 ⊂ A, satisfying for any j ∈ {1, . . . , n} the following conditions:
(i) fj(tj) = 1.

(ii) |fj(t)| < η
2 for t ∈ K \ Uj .

(iii) |fj(t) − 1| < η
2 for t ∈ Uj+1.

Indeed, Lemma 2.1 allows us to find a norm one function f1 ∈ A and a t1 ∈ U1∩Γ0

such that f1(t1) = 1 and |f1(t)| < η
2 for t ∈ K \ U1. Define

U2 = {t ∈ K : |f1(t) − 1| < η/2} .

It is clear that t1 ∈ U2 ∩ Γ0 and U2 ⊂ U1. Now we can apply again Lemma 2.1
to U2 to obtain f2, t2 and U3. Proceeding inductively we obtain the expected
functions f1, . . . , fn, points t1, . . . , tn and sets U = U1 ⊃ U2 ⊃ · · · ⊃ Un+1 with
tj ∈ Uj+1 ∩ Γ0, for j = 1, . . . , n.

Now, we define f := 1
n (f1 + · · · + fn). Given t ∈ K \ U , it is clear that

t ∈ K \ Uj for j = 1, . . . , n, which implies that |fj(t)| < η
2 for j = 1, . . . , n.

Therefore, we have that

|f(t)| <
η

2
for any t ∈ K \ U. (2.2)

Let us check that
�d(f(K), [0, 1]) = sup

t∈K
inf

s∈[0,1]
|f(t) − s| ≤ η. (2.3)

. . .
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An idea of the proof for A = A
(
D
)

Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let T : X → A
(
D
)

be an Asplund operator with ‖T‖= 1. Suppose that 0 < ε <
√

2 and x0 ∈ SX are such that

‖Tx0‖> 1− ε2

2 . Then there exist u0 ∈ SX and an Asplund operator T̃ ∈ S
L(X ,A

(
D
)

)
satisfying that

‖T̃u0‖= 1,‖x0−u0‖ ≤ ε and ‖T − T̃‖< 2ε.

1 Black box provides a suitable open set U ⊂D, U ∩T 6= /0 & y∗ ∈ SX ∗ with

1 = |y∗(u0)|= ‖u0‖ and ‖x0−u0‖< ε.

2 Our Uryshon type lemma applied to an arbitrary t0 ∈ U ∩T produces a
function f ∈ A

(
D
)

satisfying

f (t0) = ‖f ‖∞ = 1, f (D)⊂ Rε and f small in D\U.

3 T̃ is explicitly defined by

T̃ (x)(t) = f (t) ·y∗(x) + (1− ε)(1− f (t)) ·T (x)(t)

4 Suitability of U and the Maximum Principle in A
(
D
)

gives ‖T − T̃‖< 2ε.
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Concluding remarks

The theorem that we have proved applies in particular to the ideals of
finite rank operators F , compact operators K , p-summing operators Πp

and of course to the weakly compact operators W themselves. To the
best of our knowledge even in the case W (X ,A) the Bishop-Phelps
property that follows is a brand new result.

Our theorem provide unexpected examples of operators with the BBBp
providing an answer to a question that appears in a paper by
Acosta-Aron-Garćıa-Maestre, JFA 2008.
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A lecture should finish with a problem. . .

A Ph. D. problem (for Olena)

What can be said for operators T : X → A(K ,Y )?

A(K ,Y ) := {f : K → Y : f continuous,y∗ ◦ f ∈ A(K)}.

What is the true meaning of BPBp for the operators below? (Gustavo + me)

the Fourier transform ̂ : L1(Rn)→ C0(Rn) ;

or, Tϕ : A
(
D
)
→ A

(
D
)

where Tϕ (f ) = f ◦ϕ for some ϕ ∈ A
(
D
)
;

or, Tϕ : H∞(D)→ H∞(D) where Tϕ (f ) = f ◦ϕ for some ϕ ∈ H∞(D).
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A lecture should finish with a problem. . . or two

A Ph. D. problem (for Olena)

What can be said for operators T : X → A(K ,Y )?

A(K ,Y ) := {f : K → Y : f continuous,y∗ ◦ f ∈ A(K)}.

What is the true meaning of BPBp for the operators below? (Gustavo + me)

the Fourier transform ̂ : L1(Rn)→ C0(Rn) ;

or, Tϕ : A
(
D
)
→ A

(
D
)

where Tϕ (f ) = f ◦ϕ for some ϕ ∈ A
(
D
)
;

or, Tϕ : H∞(D)→ H∞(D) where Tϕ (f ) = f ◦ϕ for some ϕ ∈ H∞(D).
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GRACIAS!
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