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James’ theorem, 1964. Trans. Amer. Math. Soc.

WEAKLY COMPACT SETS

BY
ROBERT C. JAMES(})

It has been conjectured that a closed convex subset C of a Banach
space B is weakly compact if and only if each continuous linear func-
tional on B attains a maximum on C [5]. This reduces easily to the case
in which C is bounded, and will be answered in the affirmative [Theorem 4]
after some preliminary results are established. Following suggestions by Nami-
oka and Peck, the result is then generalized, first to weakly closed subsets
of Banach spaces and then to weakly closed subsets of complete locally convex
linear spaces.

THEOREM 4. Let C be a bounded, closed, non-weakly-compact, convex subset
of a Banach space B. Then there is a continuous linear functional defined on B
that does not attain its sup on C.
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James’'theorem
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Simons’ inequality, 1972, Pac. J.
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A CONVERGENCE THEOREM WITH BOUNDARY

S. SimMoNs

This paper contains a bounded-convergence type theorem
that depends on the fact that certain functions attain their
suprema. Among the applications discussed are Rainwater’s
theorem and two technical results, one used in the proof of
the Choquet-Bishop-deLeeuw theorem and the other in the
proof of Krein’s Theorem.

3. THEOREM. If the motation is as in Lemma 2 and p is a
linear functional on 1.(X) dominated by S (i.e., a positive linear func-
tional of norm 1) then

sup lim sup f,(y) = lim sup 24(f,) .
yey N0 n—sco
In particular, for all xze X,

sup lim sup f,,(y) = lim sup f,() .
yey n—sco n—soo
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Simons’ inequality, 1972, Pac. J.

Theorem (Simons's theorem)

If E is a Banach space, B C C are nonempty bounded subsets of
E* and (xp) is a bounded sequence in E such that for every

xe{ZAnxn; for all n>1, A, >0 and Zl,,zl}

n=1 n=1

there exists b* € B with (x,b*) = sup{(x,c*) : c* € C}, then

sup { limsup(xy, b*) : b* € B} =sup {limsup(x,,c*) : ¢* € C}.
n n

v
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Boundaries of a Convex Set and Interpolation Sets

Gilles Godefroy

Equipe d’Analyse, Université Paris 6 Tour 46-0, 4, Place Jussieu, F-75230 Paris Cedex 05,
France

University of Missouri-Columbia, Department of Mathematics, Columbia, MO 65211, USA

0. Introduction. Notations

The structure of the “boundary” of a convex set C is a field of intensive research in
functional analysis. The classical “boundary” is the set Ext(C) of the extreme
points of C — at least when some compactness is assumed — and C is recovered
from Ext(C) by means of the integral representation theory.

In this paper, a more general notion of boundary (Definition 1.1) is considered.
Such a boundary needs not contain, or even meet, the extreme points, and thus the
classical tools are not available. However, through R. C. James’s technique and a
remarquable result of S. Simons, a convex set can often be “recovered”, in a strong
sense, from its boundary (Sect. 1). Tight connections are established between this
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Godefroy's theorem, 1987, Math. Ann.

Definition I.1. Let C be a closed bounded convex set in the dual E* of a Banach
space E, and let B be a subset of C. The set B is a boundary of C if:

VxeE, 3beB suchthat x(b)=sup(x).
c

Odur first result is a consequence of a deep result of Simons [26, Lemma 2].
According to [26], the roots of this result are lying in the works of James [13] and
Pryce [21].

Theorem L.2. Let K be a closed bounded convex set in E*, and B a boundary of K. We
assume that if C is a convex bounded set in E and ¢ € E** isin the closure of C for the
topology oy of pointwise convergence on B, there exists a sequence (x,), ; in C such
that o= nlglolo X, for og. Then K is w*-compact and K =cv"(B).

\.

Theorem II1.3. Let K be a closed bounded convex set in the dual of a Banach space E.
We assume that K has a boundary B, and that B is contained in a weakly X -analytic
subset A of E*. Then K is w*-compact and K =¢V"(B).
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Tychonoff's theorem
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Tychonoff’s theorem vs. James' compactness theorem
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Theorem 3.7. For any bounded subset A of a Banach space E the following inequalities hold

true
o(4) < w(A)
L VI (3.6)
37(A) < Jap(4) < ckp(d) < k(4) < A(A).

Moreover for any x** € Zw*, there is a sequence {T,}n>1 in A such that
[l =y || < +(A) (3.7)
for any w*-cluster point y** of {xn}n>1 in E**.

Furthermore, A is weakly relatively compact in E if, and only if, one (equivalently all) of
the numbers y(A), Jag(A), ckg(A),k(A),0(A) and w(A) is zero.
o J

Angosto, Cascales, Ruiz Galan, Fabian, Kalenda, Hajek, Montesinos, Suarez
Granero, Orihuela, Spurny, Zizler, 2005-2013
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w(A) :=inf{e > 0: A C K. +¢Bg and K. C E is w-compact},
Y(A) := sup{| lim lim =}, (x,) — limlim &, (z,)| : {2}, }m>1 C Be*, {n}tn>1 C A},
n m m n
assuming the involved limits exist,

ckg(A4) =  sup d(Lg{zn}, E),
{zn}n>1CA

k(A) = d[@A" ,E)= sup d(a™, E)
Jz**EZW*
and
Jag(A) = inf{e > 0: for every z* € E*, there is 2™ € v
such that ™ (z*) = Sa(z™) and d(z™, E) < €}.

a(A) = sup disty., (L{z}}, co{a}, : n > 1}).
{23 }n>1CBpx
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We followed the proof of

WEAK COMPACTNESS IN LOCALLY CONVEX SPACES
J. D. PRYCE

1. Introduction. A recently published paper of R. C. James [1]
proves the following Theorem: A weakly closed set C in a Banach
space B is weakly compact if and only if every bounded linear func-
tional on B attains its supremum on C at some point of C. The proof
given by James is rather long and involved: the following, while not
employing any basically different ideas, is a simpler version and ex-
tends the theorem with no extra effort to deal with a locally convex
linear topological space rather than a Banach space, using the Eber-
lein criterion for weak compactness (see e.g. [2, p. 159]).
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Kalenda, Spurny and Cascales, 2012

w

Theorem 3.8 ([30, Theorem 6.1]). Let E be a Banach space such that (Bg~,w*) is angelic.
Then for any bounded set A C E we have

$7(4) < 70(4) = Jan(4) = c(4) = K(4) < 7(4),

where

70(A) = sup{|lim lim 2 (2;)| : {z;};51 C A, {#{}i>1 C Bp-, 2} % 0}.
i

\. J
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Orihuela-Cascales

Given D C E we write
Lp(E*) :={z* € E": (z,2") <0, forevery z € D}.

Theorem 3 (One-side James compactness theorem). Let F be a weakly count-
ably K-determined Banach space and let A be a bounded, convex and closed
subset of E. The following statements are equivalent:
(1) A is weakly compact;
(ii) there is a weakly compact set D C E with 0 ¢ D and with the property
that every element of Lp(E*) attains its supremum on A.

\. J
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Theorem 2 (Unbounded Godefroy’s Theorem). Let F be a Banach space, B a
nonempty subset of E* and D C E* weakly compact. Let us assume that,

(i) for every x € E with (x,d*) < 0 for all d* € D we have that
sup{(z,c") : ¢ € B} = (z,b),
for some b* € B;

(ii) for every convex bounded subset L C E and every z** & ¥ c B~
there is a sequence (yy) in L such that (x**, z*) = lim, (y,, z*) for every
z*€ BUD.?

We have that,
@ if0 ¢ coBUD)"". then

CO(B)w* C U{)\CO(B UD):Ae(l,+o0)}
(b) if B is bounded, weakly countably K -determined and 0 ¢ D,? then'
H I

co(B)" c co(B)" +| Jtccod)" : € = 0}.
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(@) if0 ¢ co(BUD) ', then

wo(B)" | J{Aco(BUD): A€ L, +o0)}
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(@) if0 ¢ co(BUD) ', then

wo(B)" | J{Aco(BUD): A€ L, +o0)}

Oci=

*k— *k—
X0 X0
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@) if0 ¢ co(BU D), then

wo(B)” | J{Aco(BUD): A€ L, +00)}

(xg*,x*) << B < (x3*,x5) for every x* € H and B <O0.
Define L:={y € Bg : (y,x§) > B}.

©0

© By Goldstine theorem, we have that x§* € " . Our assumptions imply
that there is a sequence

(xn) in L that converges to x3* pointwise on BUD.

Assume D s finite: then we can a assume that (x,,x*) < o <0 for every
neNand x* € D;

all convex series of (x,) attains its maximum at B;
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(@) if 0 ¢ co(BU D)“'H, then

co(B)w* C U{)\CO(B UuD): el —I—oo)}HAH

Q (X", x*) <a< B <(xz*x5) for every x* € H and B <O0.
@ Define L:={y € B : (y,x5) > B}.

© By Goldstine theorem, we have that x§* € L" . Our assumptions imply
that there is a sequence

Theorem (Simons’s theorem)

If E is a Banach space, B C C are nonempty bounded subsets of E* and (xp) is
a bounded sequence in E such that for every

XG{ZA«”X”Z foralln>1, A, >0 and Z/’L,,zl}
n=1

n=1

there exists b* € B with (x,b*) = sup{(x,c*) : c* € C}, then

sup { limsup(x,, b*) : b* € B} =sup {limsup(x,,c*) : ¢* € C}.
n n
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@) if0 ¢ co(BU D), then

wo(B)” | J{Aco(BUD): A€ L, +00)}

Q (x3*.x") <a <P < (x5*,x5) for every x* € H and 8 <0.
@ Define L:={y € Be: (y,x5) > B}

© By Goldstine theorem, we have that x§* € " . Our assumptions imply
that there is a sequence

(xn) in L that converges to x3* pointwise on BUD.

@ Assume D is finite: then we can a assume that (x,,x*) < a <0 for every
neNand x* € D;

@ all convex series of (xj) attains its maximum at B;

@ Simons inequality apply to obtain that

sup{limsup(xp, b*) : b* € B} = sup{limsup(xn,c*): c* € CO(B)WX}.
n n

@ The conditions imply that the previous equality cannot hold.
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@ This study has been done as a consequence of a question by Delbaen for
LY ().

@ There are non-bounded versions of the results: one needs for that of an
unbounded type Simons theorem proved by Ruiz Galdn and Orihuela.

© There are applications of the unbounded cases to convex functions.

E*

R

@ B. Cascales, J. Orihuela and M. Ruiz Galan. Compactness, optimality and
Risk Computational and Analytical Mathematics. Edited by D. Bailey,
H.H. Bauschke, P. Borwein, F. Garvan, M. Therd, J.D. Vanderwerff and
H.Wolkovicz. Springer, Chapter 10, 153-207, (2013). THANKS
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