
Página  41IDENTIDAD VISUAL CORPORATIVA

Papel de Carta

Tamaño A4, reducido al 60%.

Universidad
de Murcia

Departamento
Matemáticas
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James’ theorem, 1964. Trans. Amer. Math. Soc.
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,W� KDV� EHHQ� FRQMHFWXUHG� WKDW� D� FORVHG� FRQYH[� VXEVHW� &� RI� D� %DQDFK
VSDFH� %� LV� ZHDNO\� FRPSDFW� LI� DQG� RQO\� LI� HDFK� FRQWLQXRXV� OLQHDU� IXQF�
WLRQDO� RQ� %� DWWDLQV� D� PD[LPXP� RQ� &� >�@�� 7KLV� UHGXFHV� HDVLO\� WR� WKH� FDVH
LQ�ZKLFK� &�LV� ERXQGHG�� DQG� ZLOO� EH� DQVZHUHG� LQ� WKH� DIILUPDWLYH� >7KHRUHP� �@
DIWHU� VRPH� SUHOLPLQDU\� UHVXOWV� DUH� HVWDEOLVKHG�� )ROORZLQJ� VXJJHVWLRQV� E\� 1DPL�
RND� DQG� 3HFN�� WKH� UHVXOW� LV� WKHQ� JHQHUDOL]HG�� ILUVW� WR� ZHDNO\� FORVHG� VXEVHWV
RI� %DQDFK� VSDFHV� DQG� WKHQ� WR� ZHDNO\� FORVHG�VXEVHWV� RI�FRPSOHWH� ORFDOO\� FRQYH[
OLQHDU� VSDFHV�
7KH� RULJLQDO� PRWLYDWLRQ� IRU� WKLV� FRQMHFWXUH� ZDV� WKH� NQRZOHGJH� WKDW� LW� LV� WUXH

ZKHQ�&�LV�WKH�XQLW�VSKHUH�RI�D�VHSDUDEOH� %DQDFK�VSDFH�>�@��ZKLFK�ZDV�ODWHU�H[WHQGHG
WR� DUELWUDU\� %DQDFK� VSDFHV� >��� 7KHRUHP� �@�� $GGLWLRQDO� VXSSRUW� ZDV� JLYHQ� WKH
FRQMHFWXUH� ZKHQ� 9�� /�� .OHH� >�@� SURYHG� D� VHHPLQJO\� UHODWHG� WKHRUHP²QDPHO\�
WKDW� LI� &� LV� D� ERXQGHG� FORVHG� QRQ�ZHDNO\�FRPSDFW� FRQYH[� VXEVHW� RI� D� %DQDFK
VSDFH�� WKHQ� WKHUH� LV�D�GHFUHDVLQJ� VHTXHQFH� ^.£`�RI�QRQHPSW\� FORVHG�FRQYH[�VXEVHWV
RI� &�VXFK� WKDW�� IRU� HDFK� [H&� DQG� HDFK� PH>������ WKH� VHW� [� �� P�&�²�[�� PHHWV
RQO\� ILQLWHO\� PDQ\� RI� WKH� VHWV� ^.£`��,II� LV� D� FRQWLQXRXV� OLQHDU� IXQFWLRQDO� ZKRVH
VXS�RQ� &� LV�0�DQG� LI�WKHUH� LV�QR�[�LQ�&�IRU�ZKLFK� I�[��  � 0��WKHQ� D�VXLWDEOH� FKRLFH
IRU� .OHH
V� VHTXHQFH� ^.£`�LV� WR� OHW� .Ä� � &�Q� ^[�I�[�� A� 0�²���Q`� IRU� HDFK� Q�
,W� LV�LQWHUHVWLQJ� WR� QRWH� WKDW� WKH�FRQMHFWXUH� FDQ�EH�YHULILHG�HDVLO\�IRU�D�ERXQGHG

FORVHG�FRQYH[�VHW�WKDW� LV�V\PPHWULF� DERXW� DQ� LQWHULRU� SRLQW� [�� VLQFH�LI�[� LV�WUDQV�
ODWHG� WR� ���WKHQ� WKH� FRQYH[� VHW� DV�D�XQLW� VSKHUH� LQGXFHV� D�QRUP� IRU� ZKLFK� WKH� QHZ
%DQDFK� VSDFH� LV� LVRPRUSKLF� WR� WKH� RULJLQDO� VSDFH�� 0RUH� JHQHUDOO\�� LI��� LV� DQ� LQ�
WHULRU� SRLQW� RI� D� ERXQGHG� FRQYH[� VHW� &� DQG� .� LV� WKH� FORVHG� FRQYH[� VSDQ
RI� &?M� ��²�&��� WKHQ� .� LV� V\PPHWULF� DERXW� �� DQG� WKH� VXS� RQ� .� RI� D� FRQWLQXRXV
OLQHDU� IXQFWLRQDO� LV� WKH� ODUJHU� RI� LWV� VXSV� RQ� &� DQG� ²�&�� 7KHUHIRUH� IRU� FRQYH[
ERGLHV� WKH� FRQMHFWXUH� FDQ� EH� HVWDEOLVKHG� E\� XVLQJ� WKH� NQRZQ� WKHRUHP� IRU� XQLW
VSKHUHV� >��� 7KHRUHP� ���S�� ���@�
7KH� IROORZLQJ� WKHRUHP� LV� D� JHQHUDOL]DWLRQ� RI� D� FKDUDFWHUL]DWLRQ� RI� ZHDN� FRP�

SDFWQHVV� RI� WKH� XQLW� VSKHUH� WKDW� ZDV� XVHIXO� LQ� >�@�� ,Q� WKH� SURRI� RI� WKLV� WKHRUHP
DQG� WKHUHDIWHU�� ZH� VKDOO� XVH�WKH� FRQYHQWLRQ� WKDW� D� VHTXHQFH� RI� QRQRYHUODSSLQJ

3UHVHQWHG�WR�WKH�6RFLHW\��$SULO����������UHFHLYHG�E\�WKH�HGLWRUV�$SULO���������
���� 7KLV�ZRUN�ZDV�VXSSRUWHG� LQ�SDUW� E\�1DWLRQDO� 6FLHQFH�)RXQGDWLRQ� JUDQW� QXPEHU�16)�
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!�� a�Q���U�Q������� >=� ��6Il� ���Q�LKQ�LWW��� ��=� IW�� OLPVXSQAI�@�

7KHUHIRUH� SURSHUW\� .� LV�YDOLG� ZKHQ� N� � Q�������IRU� DOO� FKRLFHV� RI� ^J�,�L����`� DV� D
VHTXHQFH� RI�QRQRYHUODSSLQJ� PHPEHUV� RI�FRQY^*
���*Ä
������`�

7KHRUHP� ��� /HW� &� EH� D� ERXQGHG�� FORVHG�� QRQ�ZHDNO\�FRPSDFW�� FRQYH[� VXEVHW
RI� D� %DQDFK� VSDFH� %�� 7KHQ� WKHUH� LV� D� FRQWLQXRXV� OLQHDU� IXQFWLRQDO� GHILQHG� RQ�%
WKDW� GRHV� QRW� DWWDLQ� LWV� VXS� RQ� &�

3URRI�� ,W� IROORZV� IURP� 7KHRUHP� �� WKDW� WKH� QXPEHU� U� DQG� WKH� VHTXHQFHV� ^]M
DQG� ^�£`�K\SRWKHVL]HG� IRU� /HPPD� �� DFWXDOO\� H[LVW�� )RU� WKH� UHVXOWLQJ� VHTXHQFH
^J�`��LW�ZLOO�EH�FRQYHQLHQW� WR� KDYH

,�=��OJL�\����� ��ÇIW�� OLPVXSJ�����������=�IWJ£�I����� �=� ����JL��
8�L� X�L� ����� W�L� X�L� ����

����� A�
^N� ����U�N�

IRU� DOO�N�DQG� DOO�\�DQG� I� LQ�&��)RU� WKLV�� LW�LV�VXIILFLHQW� WR� KDYH

����=�l:� A� ��A!Ub� �RU��=IWAAY-�
8�O� ������ N�O� /��������P

ZKHUH� 0� LV�DQ� XSSHU� ERXQG� IRU� ^__�[� __��[� H�&��� 7KLV� ZLOO�EH�VDWLVILHG� LI�ZH�OHW� �W�  � �
DQG� UHTXLUH� WKDW� �Ä�O� A� �a�Q���U�-0� DQG� �Q�����A� LIW�� IRU� DOO� Q��1RZ� OHW�2�EH�D
OLQHDU� IXQFWLRQDO� RI� XQLW� QRUP� GHILQHG� RQ� WKH� VSDFH� �P�� RI� ERXQGHG� VHTXHQFHV
DQG� VXFK�WKDW

OLPLQI[�� �J���[��[������ tt� OLPVXS[���

)RU� H[DPSOH�� ZH� FDQ� OHW� ��!�EH� DQ\� OLQHDU� IXQFWLRQDO� RI� XQLW� QRUP� VXFK� WKDW
�!�[��[�������� � OLPÄA°[%�ZKHQHYHU� WKLV� OLPLW� H[LVWV� �RU�ZH�FRXOG� OHW��(!�EH�D��%DQDFK
OLPLW�²EXW� ZH� GR� QRW� QHHG� WKH� �WUDQVODWLRQ� LQYDULDQFH�� RI� D� %DQDFK� OLPLW��
1RZ� IRU� WKH� VHTXHQFH� ^J£`�RI� WKH� OHPPD�� GHILQH� D� FRQWLQXRXV� OLQHDU� IXQFWLRQDO� J
RQ� %�E\�OHWWLQJ� J�]��  � �w!>J©��]���J��]��� ���@��7KHQ� __�J�__�A� ��DQG� ZH�DOVR� KDYH

����� OLPLQIJ;]��A� J�]��A� OLPVXSJ��]�

IRU�DOO�]�LQ�%��/HW�*�EH�GHILQHG�E\

*�[�� � =� �LJL�[���� ����=� IW�J�[��

,W� IROORZV� IURP� SURSHUW\� .�RI�WKH� OHPPD� WKDW�� LI
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James’theorem
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OLQHDU� KRPHRPRUSKLVP� K� WKDW� FDUULHV� (� RQWR� D� FORVHG� OLQHDU� VXEVSDFH� )
RI� WKH
SURGXFW� VSDFH� 3�  � >;LHAD�� ,I� Z�LQGLFDWHV� WKH� ZHDN� WRSRORJ\�� WKHQ� �(
�Z�� LV� D
FORVHG� VXEVSDFH� RI� �3��Z��DQG� �3��Z�� � >@Ä� H\W��IO��Z��
)RU� HDFK� D� F� $�� OHW� �FD�GHQRWH� WKH� FDQRQLFDO� SURMHFWLRQ� RI� 3� RQWR� %D�� ,I� �IO� LV

FRQWLQXRXV� OLQHDU� IXQFWLRQDO� RQ� %D�� WKHQ� IDQDK� LV� D� FRQWLQXRXV� OLQHDU� IXQFWLRQDO
RQ� (�� 6LQFH�IDQDK� DWWDLQV� LWV� VXS� RQ� 6�� �Ä� DWWDLQV� LWV� VXS� RQ� �WDQ6��)URP� 7KHRUHP� �
LW� IROORZV� WKDW� YLFO�QDK6�� LV� ZHDNO\� FRPSDFW�� ZKHQFH� RI� FRXUVH� WKH� VHW
>@DAZFO��WDQ6�� LV� D� ZHDNO\� FRPSDFW� VXEVHW� RI� 3� DQG� LWV� ZHDNO\� FORVHG� VXEVHW
ZFO��K6�� LV� DOVR� ZHDNO\� FRPSDFW�� %XW� WKHQ� ZFO�6�� LV� ZHDNO\� FRPSDFW� DQG� WKH
SURRI� LV�FRPSOHWH�

5HIHUHQFHV
��� :�� )�� (EHUOHLQ�� :HDN� FRPSDFWQHVV� LQ� %DQDFK� VSDFHV�� ,�� 3URF�� 1DW�� $FDG�� 6HL�� 8�6�$�

�����������������
��� 5�� &�� -DPHV�� 5HIOH[LYLW\� DQG� VXSUHPXP� RI�OLQHDU� IXQFWLRQDOV�� $QQ�� RI� 0DWK�� �������������

��������
��� ��� &KDUDFWHUL]DWLRQV�RI�UHIOH[LYLW\��6WXGLD� 0DWK�� �������������������
��� -�� /��.HOOH\� DQG� ,�� 1DPLRND�� /LQHDU� WRSRORJLFDO� VSDFHV�� 9DQ�1RVWUDQG�� 3ULQFHWRQ�� 1�� -��

�����
��� 9��/��.OHH�� -U��� $�FRQMHFWXUH� RQ�ZHDN� FRPSDFWQHVV�� 7UDQV�� $PHU�� 0DWK�� 6RF�� ����������

��������
��� 9��6PXOLDQ�� 2Q�WKH�SULQFLSOH� RI� LQFOXVLRQ� LQ�WKH� VSDFH� RI� W\SH� ����� 5HF�� 0DWK�� �0DW�� 6E�

�1��6����������������������
��� -�:��7XNH\�� 6RPH�QRWHV�RQ�WKH�VHSDUDWLRQ� RI�FRQYH[�VHWV�� 3RUWXJDO�� 0DWK�� �����������������

+DUYH\� 0XGG� &ROOHJH�
&ODUHPRQW�� &DOLIRUQLD

,QVWLWXWH� IRU� $GYDQFHG� 6WXG\�
3ULQFHWRQ�� 1HZ� -HUVH\
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Simons’ inequality, 1972, Pac. J.

P ACIF IC JOU RN AL OF M ATH E M ATI C S
Vol. 40, N o. 3, 1972

A CONVERGENCE THEOREM WITH BOUNDARY

S. SIMONS

This paper contains a bounded convergence type theorem
that depends on the fact that certain functions attain their
suprema. Among the applications discussed are Rainwater's
theorem and two technical results, one used in the proof of
the Choquet Bishop deLeeuw theorem and the other in the
proof of Krein's Theorem.

The contents of this paper and the two following it were sug 
gested by some results and techniques of R C. James and J. D. Pryce.

The main result of this paper is Lemma 2. See [1], Lemma 2
and [5], Lemma 4 for the source of the idea. We deduce from Lemma
2 a one sided convergence theorem (Theorem 3) and a two sided con 
vergence theorem (Theorem 8).

Corollary 4 is a strict generalization of the following result: if
{fn)n^ι is a uniformly bounded sequence of concave uppersemicontinuous
functions on a compact subset X of a real Hausdorff locally convex
space and lim ud^^f^x) ^ 0 for each extreme point x oί X then
lim infŵ oo/n(α) ^ 0 for each xeX. (See [4], Lemma 4.3, p. 28.) The
latter result is used in one proof of the Choquet Bishop deLeeuw
theorem. (For an alternative approach see [7], Theorem 43.)

Corollary 10 extends Lebesgue's bounded convergence theorem to
continuous functions on a pseudocompact space (i.e., a topological space
on which every real continuous function is bounded (and hence attains
its bounds)).

Corollary 11 is a strict generalization of the following result of
Rainwater: let {xn}n^ι be a bounded sequence in a normed linear space
E, xe E and <a?Λ, yy —> <#, yy for each extreme point y of the unit
ball of the dual, E', of E. Then xn *x in w(E, E'). (See [4], p. 33
and [6].)

Corollary 13 is a strict generalization of the following result used
in one proof of Krein's Theorem: if Y is a countably compact subset
of a real linear topological space, {fn}n>ι is a sequence of continuous
linear functionals on E uniformly bounded on Y and lim^^y, fny =  0
whenever yeY then lim^^x, fny =  0 whenever x e eonv~Γ. (See [2],
17.11, p. 158 and 17 H, p. 164.)

All vector spaces considered in this paper will be real.

1* NOTATION. We suppose that X Φ φ. If /  e L(X) we write
S(/ ) =  sup/ (X) , I ( / ) =  inf/ (X) and | | / | | = sup |/ (X) |. We write
"conv" for "convex hull of".
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V Wϊf) =  Hy)   hn_M   Σ λ  1 ^ )

^ S(h)   Sih^d   Σ λ ι£

from (4) ^  Γ^ ί^ " ^ +  λ>l ~ T ^ Vβ

hence, from the choice of λ, gjy) ^A — 28. Since gm e conv {fn: n ̂  m},
for each m ̂  1 there exists k(m) Ξ> m such that fk{m){y) ^ A — 2d,
from which lim su$n^fn(y) ^ A — 23. The result follows since δ is
arbitrary.

3* THEOREM. If the notation is as in Lemma 2 and µ is a
linear functional on L(X) dominated by S (i.e., a positive linear func 
tional of norm 1) then

sup lim sup fn(y) ^ lim sup µ(fn) .
yeY n *oo n *<χ>

In particular, for all xe X,

sup lim sup/ Λ(i/ ) ^ lim

Proof. If sup^limsup^ooΛO/ ) < lim sup*.**/£(/») then, by re 
placing {fn} by an appropriate subsequence, we can assume that

sup lim sup/ H(2/ ) < inf µ{fn) .

But in f^ µ(fn) = mf / i(conv {/n: n ^ 1}) ̂  inf S(conv {/ft: n ^ 1}) and this
would contradict Lemma 2.

4* COROLLARY. T̂ β suppose that X is a compact convex subset
of a real linear topological space E, Y c X and

(whenever f is a continuous convex function on X
(5) j

[then there exists yeY such that f{y) — S(f) .

( a) / / , for each n ^ 1, fn is a continuous convex function on
X, s u p ^ i I I / J I < oo and l im su p n ^ «»/ Λ( 2 / ) ^ 0 whenever yeY then
l i m s u p ^ e o / % ( # ) ^ 0 whenever xe X.

(b) If E is locally convex Hausdorff and, for each n ^ 1, gn is
a bounded convex lower semicontinuous function on X, s u p ^ \ \gn\ \  < oo
and l i m su p % _ o o ^ ( 2 / ) ^ 0 whenever y e Y then l i m s u p ^ o o ^ α ; ) ^ 0 w h e n  
ever xe X. In particular, this result is true ifY= exX (the set of
extreme points of X).

Proof.
(a) is immediate from Theorem 3.
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Theorem (Simons’s theorem)

If E is a Banach space, B ⊂ C are nonempty bounded subsets of
E ∗ and (xn) is a bounded sequence in E such that for every

x ∈
{

∞

∑
n=1

λnxn : for all n ≥ 1, λn ≥ 0 and
∞

∑
n=1

λn = 1

}

there exists b∗ ∈ B with 〈x ,b∗〉= sup{〈x ,c∗〉 : c∗ ∈ C}, then

sup
{

limsup
n
〈xn,b∗〉 : b∗ ∈ B

}
= sup

{
limsup

n
〈xn,c∗〉 : c∗ ∈ C

}
.
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Godefroy’s theorem, 1987, Math. Ann.
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Tychonoff’s theorem



Background A few pictures explaining what we do A few contributions One last thing
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Tychonoff’s theorem vs. James’ compactness theorem
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One side James theorem
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Notice that bd(A, B) can be di↵erent from bd(B, A) and that max{ bd(A, B), bd(B, A)} is the Haus-
dor↵ distance between A and B. Notice further that bd(A, B) = 0 if and only if A ⇢ B (norm
closure) and that

bd(A, B) = inf{" > 0 : A ⇢ B + "BE⇤⇤}.

Definition 2. Given a bounded subset A of a Banach space E we define:

!(A) := inf{" > 0 : A ⇢ K" + "BE and K" ⇢ E is w-compact},

�(A) := sup{| lim
n

lim
m

x⇤
m(xn) � lim

m
lim
n

x⇤
m(xn)| : {x⇤

m}m�1 ⇢ BE⇤ , {xn}n�1 ⇢ A},

assuming the involved limits exist,

ckE(A) := sup
{xn}n�1⇢A

d(LE⇤⇤{xn}, E),

k(A) := bd(A
w⇤

, E) = sup
x⇤⇤2A

w⇤
d(x⇤⇤, E)

and

JaE(A) = inf{" > 0 : for every x⇤ 2 E⇤, there is x⇤⇤ 2 A
w⇤

such that x⇤⇤(x⇤) = SA(x⇤) and d(x⇤⇤, E)  "}.

The function ! was introduced by de Blasi [20] as a measure of weak noncompactness
that is somehow the counterpart for the weak topology of the classical Kuratowski measure
of norm noncompactness. Properties for � can be found in [11, 12, 32, 50, 104] and for ckE

in [11] –note that ckE is denoted as ck in that paper. The quantity k has been used in [11,
32, 50, 66]. A thorough study for JaE has been done in [30] to prove, amongst other things,
a quantitative version of James’s weak compactness theorem whose statement is presented as
part of Theorem 3.7 bellow. This theorem tells us that all classical approaches used to study
weak compactness in Banach spaces (Tychono↵’s theorem, Eberlein-Šmulian’s theorem, Eberlein-
Grothendieck double-limit criterion and James’s theorem) are qualitatively and quantitatively
equivalent.

Theorem 3.7. For any bounded subset A of a Banach space E the following inequalities hold
true

�(A)  2!(A)

 

1
2�(A)  JaE(A)  ckE(A)  k(A)  �(A).

(3.6)

Moreover for any x⇤⇤ 2 A
w⇤

, there is a sequence {xn}n�1 in A such that

kx⇤⇤ � y⇤⇤k  �(A) (3.7)

for any w⇤-cluster point y⇤⇤ of {xn}n�1 in E⇤⇤.

Furthermore, A is weakly relatively compact in E if, and only if, one (equivalently all) of
the numbers �(A), JaE(A), ckE(A), k(A), �(A) and !(A) is zero.

17Angosto, Cascales, Ruiz Galán, Fabian, Kalenda, Hajek, Montesinos, Suarez

Granero, Orihuela, Spurný, Zizler, 2005-2013
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Definition

Notice that bd(A, B) can be di↵erent from bd(B, A) and that max{ bd(A, B), bd(B, A)} is the Haus-
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Definition 2. Given a bounded subset A of a Banach space E we define:

!(A) := inf{" > 0 : A ⇢ K" + "BE and K" ⇢ E is w-compact},

�(A) := sup{| lim
n

lim
m

x⇤
m(xn) � lim

m
lim
n

x⇤
m(xn)| : {x⇤

m}m�1 ⇢ BE⇤ , {xn}n�1 ⇢ A},

assuming the involved limits exist,

ckE(A) := sup
{xn}n�1⇢A

d(LE⇤⇤{xn}, E),

k(A) := bd(A
w⇤

, E) = sup
x⇤⇤2A

w⇤
d(x⇤⇤, E)

and

JaE(A) = inf{" > 0 : for every x⇤ 2 E⇤, there is x⇤⇤ 2 A
w⇤

such that x⇤⇤(x⇤) = SA(x⇤) and d(x⇤⇤, E)  "}.

The function ! was introduced by de Blasi [20] as a measure of weak noncompactness
that is somehow the counterpart for the weak topology of the classical Kuratowski measure
of norm noncompactness. Properties for � can be found in [11, 12, 32, 50, 104] and for ckE

in [11] –note that ckE is denoted as ck in that paper. The quantity k has been used in [11,
32, 50, 66]. A thorough study for JaE has been done in [30] to prove, amongst other things,
a quantitative version of James’s weak compactness theorem whose statement is presented as
part of Theorem 3.7 bellow. This theorem tells us that all classical approaches used to study
weak compactness in Banach spaces (Tychono↵’s theorem, Eberlein-Šmulian’s theorem, Eberlein-
Grothendieck double-limit criterion and James’s theorem) are qualitatively and quantitatively
equivalent.

Theorem 3.7. For any bounded subset A of a Banach space E the following inequalities hold
true

�(A)  2!(A)

 

1
2�(A)  JaE(A)  ckE(A)  k(A)  �(A).

(3.6)

Moreover for any x⇤⇤ 2 A
w⇤

, there is a sequence {xn}n�1 in A such that

kx⇤⇤ � y⇤⇤k  �(A) (3.7)

for any w⇤-cluster point y⇤⇤ of {xn}n�1 in E⇤⇤.

Furthermore, A is weakly relatively compact in E if, and only if, one (equivalently all) of
the numbers �(A), JaE(A), ckE(A), k(A), �(A) and !(A) is zero.
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Proof. Without loss of generality we can assume that A is absolutely convex. Proposition 3.3
give us a sequence {x⇤

n}n�1 in BE⇤ such that distk·kA
(L{x⇤

n}, co{x⇤
n : n � 1}) > 0 and Proposition

3.4 says that there is a subsequence {x⇤
nk

}k�1 of {x⇤
n}n�1 that verifies the hypotheses of Theorem

3.5 with ' = 0. So we find a sequence {g⇤n}n�1 such that for all n � 1, g⇤n 2 co�{x⇤
nk

: k � n}
and g0 2 co�{g⇤n : n � 1} in such a way that g0 � h doest not attain its supremum on A, where
h is any function in `1(A) with lim infn g⇤n  h  lim supn g⇤n on A.

In particular we have seen how to constructively produce linear functionals g0 � g that do
not attain their supremum on A, whenever g is a w⇤-cluster point of the sequence {g⇤n}n�1 in
BE⇤ .

We finish up this section with a short visit to the so-called measures of weak noncompact-
ness in Banach spaces: the relationship of these measures with the techniques already presented
in this survey will be plain clear when progressing in our discussion below.

We refer the interested reader to [14, 104] where measures of weak noncompactness are
axiomatically defined. A measure of weak noncompactness is a non-negative function µ defined
in the family of bounded subsets of Banach spaces, with the property that whenever E is a
Banach space and ME is its family of bounded sets, then for every A, B 2 ME and � 2 R we
have

(i) µ(A) = 0 if, and only if, A is weakly relatively compact in E,

(ii) if A ⇢ B then µ(A)  µ(B),

(iii) µ(co(A)) = µ(A),

(iv) µ(A [ B) = max{µ(A), µ(B)},

(v) µ(A + B)  µ(A) + µ(B),

(vi) µ(�A) = |�|µ(A).

Inspired by Proposition 3.3, we define for a bounded set A of a Banach space E the quantity

�(A) := sup
{x⇤

n}n�1⇢BE⇤
distk·kA

(L{x⇤
n}, co{x⇤

n : n � 1}).

Observe that � satisfy properties (i), (ii), (iii), (iv) and (vi), and therefore � can be considered as
a measure of weak noncompactness. Beyond the formalities we will refer in general to measures
of weak noncompactness to quantities as above fulfilling property (i), and sometimes a few of the
others. These measures of noncompactness or weak noncompactness have been successfully ap-
plied to the study of compactness, operator theory, di↵erential equations and integral equations,
see for instance [10, 11, 12, 20, 30, 32, 50, 63, 66, 67, 102, 104, 103].

Next definition collects several measures of weak noncompactness that appeared in the
aforementioned literature. If A and B are nonempty subsets of E⇤⇤, then d(A, B) denotes the
usual inf distance (associated to the bidual norm) between A and B and the Hausdor↵ non-
symmetrized distance from A to B is defined by

bd(A, B) = sup{d(a, B) : a 2 A}.

16
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We followed the proof of

WEAK COMPACTNESS IN LOCALLY CONVEX SPACES 

J. D. PRYCE 

1. Introduction. A recently published paper of R. C. James [1] 
proves the following Theorem: A weakly closed set C in a Banach 
space B is weakly compact if and only if every bounded linear func- 
tional on B attains its supremum on C at some point of C. The proof 
given by James is rather long and involved: the following, while not 
employing any basically different ideas, is a simpler version and ex- 
tends the theorem with no extra effort to deal with a locally convex 
linear topological space rather than a Banach space, using the Eber- 
lein criterion for weak compactness (see e.g. [2, p. 159]). 

2. The result. 

THEOREM. Let C be a weakly closed bounded subset of the real and 
complete locally convex linear topological space E. Then C is weakly 
compact if and only if given any element f of the dual E* of E, there is 
x E C such that f(x) = sup {f(u): u E C }. 

COROLLARY. The hypothesis that E be complete may be replaced by 
the hypothesis that the closed convex hull of C be complete (in the original 
topology of E). 

PROOF. The implication one way is elementary: namely, suppose C 
is weakly compact and f any element of E*. Then by the definition of 
the weak topology f is continuous on C in the weak topology and so 
attains its bounds. 

We prove the implication the other way by assuming that C is not 
weakly compact, and constructing a continuous linear functional 
which does not attain its supremum on C at any point of C. The proof 
of this fact is divided up into a series of lemmas. 

LEMMA 1. There is a sequence (zn) of points in C and a sequence (fn) 
of elements of E* such that {fn } is an equicontinuous set and the limits 
limi lim, fi(zi) and lim, limi fi(zj) exist and are unequal. 

For the proof of this result, which is Eberlein's celebrated com- 
pactness theorem, see [2], where the result is stated on p. 159. 

We now introduce some notation. Since we shall not be dealing 
only with functionals on E that are linear, we denote by F the set of 
all real-valued continuous functions on E which are positive-homo- 
geneous, 

Received by the editors March 1, 1965. 

148 



Background A few pictures explaining what we do A few contributions One last thing

Kalenda, Spurný and Cascales, 2012

that follows from (3.6), o↵er a quantitative version (and implies) of Eberlein-Šmulian’s theorem
saying that weakly relatively countably compact sets in Banach spaces are weakly relatively
compact. Note also that (3.7) implies that points in the weak closure of a weakly relatively
compact set of a Banach space are reachable by weakly convergent sequences from within the
set (summing up, the inequalities are a quantitative version of the angelicity of weakly compact
sets in Banach spaces, see Definition 3). In a di↵erent order of ideas the inequality

1

2
�(A)  JaE(A), (3.9)

implies James’s weak compactness theorem, Theorem 1.1, and since JaE(A)  ckE(A) as well,
we therefore know that James’s theorem can be derived and implies the other classical results
about weak compactness in Banach spaces. We should mention that the proof of inequality (3.9)
in [30, Theorem 3.1] follows the arguments by Pryce in [123] suitably adapted and strengthened
for the occasion: assuming that 0 < r < �(A), two sequences {xn}n�1 ⇢ A and {x⇤

m}m�1 ⇢ BE⇤

are produced satisfying
lim
m

lim
n

x⇤
m(xn) � lim

n
lim
m

x⇤
m(xn) > r.

Then Lemma 1.2 is applied to the sequence {x⇤
m}m�1, and after some twisting and fine adjust-

ments in Pryce’s original arguments, for arbitrary 0 < r0 < r a sequence {g⇤n}n�1 in BE⇤ and
g0 2 co�{g⇤n : n � 1} are produced with the property that for any w⇤-cluster point h 2 BE⇤ of

{g⇤n}n�1, if x⇤⇤ 2 A
w⇤

is such that

x⇤⇤(g0 � h) = SA(g0 � h)

then d(x⇤⇤, E) � 1
2r0. Since 0 < r < �(A) and r0 2 (0, r) are arbitrary the inequality (3.9)

follows. Of course, g0 � h 2 E⇤ does not attain its supremum on A but we moreover know how

far from E in A
w⇤

we need to go in order that g0�h might attain it: compare with Theorem 3.6.

The aforementioned references contain examples showing when the inequalities in (3.6) are
sharp, as well as su�cient conditions of when the inequalities become equalities. An example of
the latter is given in the theorem below where we use the notion of angelic space that follows.

Definition 3 (Fremlin). A regular topological space T is angelic if every relatively countably
compact subset A of T is relatively compact and its closure A is made up of the limits of sequences
from A.

In angelic spaces the di↵erent concepts of compactness and relative compactness coincide:
the (relatively) countably compact, (relatively) compact and (relatively) sequentially compact
subsets are the same, as seen in [52]. Examples of angelic spaces include C(K) endowed with
the topology tp(K) of pointwise convergence on a countably compact space K ([70, 95]) and
all Banach spaces with their weak topologies. Dual spaces endowed with the w⇤-topology are
angelic when their predual spaces are for instance weakly countably K-determined, [115].

Theorem 3.8 ([30, Theorem 6.1]). Let E be a Banach space such that (BE⇤ , w⇤) is angelic.
Then for any bounded set A ⇢ E we have

1

2
�(A)  �0(A) = JaE(A) = ckE(A) = k(A)  �(A),

where
�0(A) = sup{| lim

i
lim

j
x⇤

i (xj)| : {xj}j�1 ⇢ A, {x⇤
i }i�1 ⇢ BE⇤ , x⇤

i
w⇤
! 0}.
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Orihuela-Cascales

6 B. CASCALES AND J. ORIHUELA

Since D is weakly compact it is not restrictive to assume that (dn) weakly con-
verges to d 2 D, see [, ]. On the other hand the boundedness of B implies that
⇠nbn ! 0 and therefore for the weak topology ⇠nbn + (1 � ⇠n)dn ! d. Conse-
quently 0 = d 2 D that contradicts our assumption 0 /2 D. On the other hand

We can use part (a) already proved to obtain

(9) co(B ⇥ {1})
w⇤

⇢
[

{�co(B ⇥ {1} [ D ⇥ {0})
k·k

: � � 1},

from where we claim that

(10) co(B)
w⇤

⇢ co(B)
k·k

+
[

{⇠co(D)
k·k

: ⇠ � 0}.

Let us prove this. If x⇤ 2 co(B)
w⇤

we can use (9) to obtain � � 1 and a sequence
(z⇤n) in co(B ⇥ {1} [ D ⇥ {0}) such that k · k � limn �z⇤n = (x⇤, 1). Notice that

z⇤n = ⇠n(y⇤
n, 1) + (1 � ⇠n)(d⇤

n, 0)

with y⇤
n 2 co(B), d⇤

n 2 co(D) and ⇠n 2 [0, 1]. Hence,

(11) k · k � lim
n

(�⇠ny
⇤
n + �(1 � ⇠n)d⇤

n, �⇠n) = (x⇤, 1)

from where limn �⇠n = 1. On the other hand, since D is weakly compact its
closed convex hull co(D)

k·k
is also weakly compact, see [, ], and there is a sub-

sequence (d⇤
nj

) weakly convergent to some d⇤ 2 co(D)
k·k

, see [, ]. Consequently
(�(1 � ⇠nj

)d⇤
nj

) weakly converges to (� � 1)d⇤ and it follows from (11) that
(�⇠nj

y⇤
nj

) weakly converges to some y⇤ 2 E⇤: observe that since limn �⇠n = 1
we have that

y⇤
nj

=
1

�⇠nj

�⇠nj
y⇤

nj
! y⇤ 2 co(B)

k·k
.

Finally we have:

x⇤ = y⇤ + (�� 1)d⇤ 2 co(B)
k·k

+ (�� 1)co(D)
k·k

and the proof is over ⇤

3. ONE-SIDE JAMES COMPACTNESS THEOREM

Given D ⇢ E we write

LD(E⇤) := {x⇤ 2 E⇤ : hx, x⇤i < 0, for every x 2 D}.

Theorem 3 (One-side James compactness theorem). Let E be a weakly count-
ably K-determined Banach space and let A be a bounded, convex and closed
subset of E. The following statements are equivalent:

(i) A is weakly compact;
(ii) there is a weakly compact set D ⇢ E with 0 /2 D and with the property

that every element of LD(E⇤) attains its supremum on A.



Background A few pictures explaining what we do A few contributions One last thing

4 B. CASCALES AND J. ORIHUELA

Theorem 2 (Unbounded Godefroy’s Theorem). Let E be a Banach space, B a
nonempty subset of E⇤ and D ⇢ E⇤ weakly compact. Let us assume that,

(i) for every x 2 E with hx, d⇤i < 0 for all d⇤ 2 D we have that

sup{hx, c⇤i : c⇤ 2 B} = hx, b⇤i,
for some b⇤ 2 B;

(ii) for every convex bounded subset L ⇢ E and every x⇤⇤ 2 L
w⇤

⇢ E⇤⇤

there is a sequence (yn) in L such that hx⇤⇤, z⇤i = limnhyn, z
⇤i for every

z⇤ 2 B [ D.2

We have that,

(a) if 0 /2 co(B [ D)
k·k

, then

co(B)
w⇤

⇢
[

{�co(B [ D) : � 2 [1, +1)}
k·k

.

(b) if B is bounded, weakly countably K-determined and 0 /2 D,3 then4

co(B)
w⇤

⇢ co(B)
k·k

+
[

{⇠co(D)
k·k

: ⇠ � 0}.

Proof. Let us prove (a). Let H be the closed convex set defined by

H :=
[

{�co(B [ D) : � 2 [1, +1)}
k·k

.

Observe that lemma 1 implies that

H =
[

{�co(B [ D)
k·k

: � 2 [1, +1)},

and therefore 0 62 H because otherwise 0 2 �co(B [ D)
k·k

for some � � 1, that

contradicts our hypothesis 0 62 co(B [ D)
k·k

.
Let us assume that there exists x⇤

0 2 co(B)
w⇤

\ H . Then the closed segment
[0, x⇤

0] does not intersects H . Indeed, if [0, x⇤
0] \ H 6= ; we can find 0 < ⇠ < 1

with ⇠x⇤
0 2 H . This implies that x⇤

0 = 1/⇠(⇠x⇤
0) 2 H (note that �H ⇢ H for

every � � 1).
The Hahn-Banach separation theorem, [, ], applied to the compact convex set

[0, x⇤
0] and the closed convex set H provides x⇤⇤

0 2 BE⇤⇤ and ↵ < � satisfying

hx⇤⇤
0 , x⇤i < ↵ < � < hx⇤⇤

0 , ⇠x⇤
0i

for every x⇤ 2 H and every 0  ⇠  1. In particular, the above inequality says
that

(4) hx⇤⇤
0 , x⇤i < ↵ < � < hx⇤⇤

0 , x⇤
0i for every x⇤ 2 H and � < 0.

2Simplificar la escritura, de la débil estrella y quizas poner como hipótesis lo mismo pero en el
bidual completo y los z⇤ en todo el dual; comparar con el enunciado de Godefroy.

3Aquí teniamos 0 /2 co(D)
k·k

4Si D = ; entonces (i) se cumple para todo x 2 E; esto implica que B es acotado, en (b) la
hipótesis se cumple automáticamente y en la tesis desaparece el segundo sumando y se obtiene el
teorema de Godefroy para el caso acotado.
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teorema de Godefroy para el caso acotado.

1 〈x∗∗0 ,x∗〉< α < β < 〈x∗∗0 ,x∗0 〉 for every x∗ ∈ H and β < 0.

2 Define L := {y ∈ BE : 〈y ,x∗0 〉> β}.
3 By Goldstine theorem, we have that x∗∗0 ∈ L

w ∗
. Our assumptions imply

that there is a sequence

(xn) in L that converges to x∗∗0 pointwise on B ∪D.

4 Assume D is finite: then we can a assume that 〈xn,x∗〉< α < 0 for every
n ∈ N and x∗ ∈D;

5 all convex series of (xn) attains its maximum at B;

6 Simons inequality apply to obtain that

sup{limsup
n
〈xn,b∗〉 : b∗ ∈ B}= sup{limsup

n
〈xn,c∗〉 : c∗ ∈ co(B)

w ∗}.

7 The conditions imply that the previous equality cannot hold.
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Theorem (Simons’s theorem)

If E is a Banach space, B ⊂ C are nonempty bounded subsets of E ∗ and (xn) is
a bounded sequence in E such that for every

x ∈
{

∞

∑
n=1

λnxn : for all n ≥ 1, λn ≥ 0 and
∞

∑
n=1

λn = 1

}

there exists b∗ ∈ B with 〈x ,b∗〉= sup{〈x ,c∗〉 : c∗ ∈ C}, then

sup
{

limsup
n
〈xn,b∗〉 : b∗ ∈ B

}
= sup

{
limsup

n
〈xn,c∗〉 : c∗ ∈ C

}
.
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1 This study has been done as a consequence of a question by Delbaen for
L1(µ).

2 There are non-bounded versions of the results: one needs for that of an
unbounded type Simons theorem proved by Ruiz Galán and Orihuela.

3 There are applications of the unbounded cases to convex functions.

B. Cascales, J. Orihuela and M. Ruiz Galán. Compactness, optimality and
Risk Computational and Analytical Mathematics. Edited by D. Bailey,
H.H. Bauschke, P. Borwein, F. Garvan, M. Therá, J.D. Vanderwerff and
H.Wolkovicz. Springer, Chapter 10, 153–207, (2013). THANKS
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