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What kind of problem are we going to talk about?

A BISHOP-PHELPS-BOLLOBÁS TYPE THEOREM FOR UNIFORM
ALGEBRAS

B. CASCALES, A. J. GUIRAO AND V. KADETS

ABSTRACT. This paper is devoted to showing that Asplund operators with range
in a uniform Banach algebra have the Bishop-Phelps-Bollobás property, i.e., they
are approximated by norm attaining Asplund operators at the same time that a
point where the approximated operator almost attains its norm is approximated
by a point at which the approximating operator attains it. To prove this result
we establish a Uryshon type lemma producing peak complex-valued functions
in uniform algebras that are small outside a given open set and whose image is
inside a symmetric rhombus with main diagonal [0, 1] and small height.

1. INTRODUCTION

Mathematical optimization is associated to maximizing or minimizing real func-
tions. James’s compactness theorem [17] and Bishop-Pehlps’s theorem [5] are two
landmark results along this line in functional analysis. The former characterizes re-
flexive Banach spaces X as those for which continuous linear functionals x∗ ∈ X∗

attain their norm in the unit sphere SX . The latter establishes that for any Ba-
nach space X every continuous linear functional x∗ ∈ X∗ can be approximated
(in norm) by linear functionals that attain the norm in SX . This paper is concerned
with the study of a strengthening of Bishop-Phelps’s theorem that mixes ideas of
Bollobás [6] –see Theorem 3.1 here– and Lindenstrauss [21] –who initiated the
study of the Bishop-Phelps property for bounded operators between Banach spaces.
Our starting point is the following definition brought in by Acosta, Aron, Garcı́a
and Maestre in 2008:

Definition 1 ([1]). A pair of Banach spaces (X, Y ) is said to have the Bishop-
Phelps-Bollobás property (BPBp for short) if for any ε > 0 there exists a δ(ε) > 0,
such that for all T ∈ SL(X,Y ), if x0 ∈ SX is such that �T (x0)� > 1 − δ(ε), then
there exist u0 ∈ SX and �T ∈ SL(X,Y ) satisfying

��� �T (u0)
��� = 1, �x0 − u0� < ε and

���T − �T
��� < ε.

A good number of papers regarding BPBp have been written during the last
years, as for instance [3, 7, 8]. Very recently, a general result has been proved
in [2], that in particular says that pairs of the form (X, C(K)) do have the BPBp
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The problem for x∗ : X → R form and T : X → Y operator

‖x∗‖= sup{|x∗(x)| : ‖x‖= 1} not always
= max{|x∗(x)| : ‖x‖= 1}

‖T‖= sup{‖T (x)‖ : ‖x‖= 1} not always
= max{‖T (x)‖ : ‖x‖= 1}

A first glance to our result

Our paper is devoted to showing that Asplund operators with range in a
uniform Banach algebra have the Bishop-Phelps-Bollobás property, i.e., they
are approximated by norm attaining Asplund operators at the same time that a
point where the approximated operator almost attains its norm is approximated
by a point at which the approximating operator attains it. To prove this result
we establish a Uryshon type lemma producing peak complex-valued functions in
uniform algebras that are small outside a given open set and whose image is
inside a symmetric rhombus with main diagonal [0,1] and small height.
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R. M. Aron, B. Cascales and O. Kozhushkina, The
Bishop-Phelps-Bollobas theorem and Asplund operators, Proc. Amer.

Math. Soc. 139 (2011), no. 10, 3553–3560.

B. Cascales, A. J. Guirao and V. Kadets, A Bishop-Phelps-Bollobás type

theorem for uniform algebras, Enviado para publicación 19/Abril/2012
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Bishop-Phelps theorem

Theorem (Bishop-Phelps, 1961)

If X is a Banach, then NAX ∗ = X ∗.

RESEARCH ANNOUNCEMENTS 
The purpose of this department is to provide early announcement of significant 

new results, with some indications of proof. Although ordinarily a research announce-
ment should be a brief summary of a paper to be published in full elsewhere, papers 
giving complete proofs of results of exceptional interest are also solicited. 

A PROOF THAT EVERY BANACH SPACE IS 
SUBREFLEXIVE 

BY ERRETT BISHOP AND R. R. PHELPS 

Communicated by Mahlon M. Day, August 19, 1960 

A real or complex normed space is subreflexive if those f unctionals 
which attain their supremum on the unit sphere S of E are norm-
dense in E*, i.e., if for each ƒ in £ * and each e > 0 there exist g in 
E* and x in S such that \g(x)\ =\\g\\ and ||/—g|| <!. There exist in-
complete normed spaces which are not subreflexive [ l ] 1 as well as 
incomplete spaces which are subreflexive (e.g., a dense subspace of a 
Hubert space). I t is evident that every reflexive Banach space is sub-
reflexive. The theorem mentioned in the title will be proved for real 
Banach spaces; the result for complex spaces follows from this by 
considering the spaces over the real field and using the known isome-
try between complex functionals and the real functionals defined by 
their real parts. 

We first cite a lemma which states, roughly, that if the hyperplanes 
determined by two functionals ƒ and g (of norm one) are nearly 
parallel, then one of ||/—g||, | | /+g | | must be small. 

LEMMA. Suppose E is a normed space and !>0. If ƒ, g£J3*, ||/|| = 1 
= ||g||, are such that \g(x)\ ^ e / 2 whenever fix) = 0 and | | # | | ^ 1 , then 
Wf-iHeor\\f+g\\£e. 

A proof of the lemma may be found in [2, Lemma 3.1]. To prove 
the theorem suppose ƒG-E* and !>0. We may assume that ||/|| = 1; 
by the lemma, we want to find gin E* such that | g{x) | g 1 for all x 
in T= {x:f(x)=0 and ||x|| ^2!~ 1 } , and for which there exists x in 
S such that g(x) = 1 = ||g|l. Let C be the convex hull of the union of 
the sets T and U= {x: \\x\\ ̂ l } , and suppose there exists XQ in U 
which is also in the boundary of C. Since C has nonempty interior, 
by the support theorem there exists g in £*, ||g|| = l, such that 

1 An easily described example has been suggested by Y. Katznelson: Let E be 
the space of all polynomials on [0, l ] , with the supremum norm. (The example in [l] 
shows clearly how the method of proof given below fails without the assumption of 
completeness.) 
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The Bishop-Phelps property for operators

Definition

An operator T : X → Y is
norm attaining if there
exists x0 ∈ X , ‖x0‖= 1,
such that ‖T (x0)‖= ‖T‖.

Definition (Lindenstrauss)

(X ,Y ) has the
Bishop-Phelps Property
(BPp) if every operator
T : X → Y can be
uniformly approximated by
norm attaining operators.

1 (X ,K) has BPp for every X
Bishop-Phelps (1961);

2 {T ∈ L(X ;Y ) : T ∗∗ ∈ NA(X ∗∗;Y ∗∗)}=
L(X ;Y ) for every pair of Banach spaces
X and Y , Lindenstrauss (1963);

3 X with RNP, then (X ,Y ) has BPp for
every Y , Bourgain (1977);

4 there are spaces X , Y and Z such that
(X ,C([0,1])), (Y , `p) (1 < p < ∞) and
(Z ,L1([0,1])) fail BPp, Schachermayer
(1983), Gowers (1990) and Acosta
(1999);

5 (C(K),C(S)) has BPp for all compact
spaces K ,S , Johnson and Wolfe, (1979).

6 (L1([0,1]),L∞([0,1])) has BPp,
Finet-Payá (1998),
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Bollobás observation

AN EXTENSION TO THE THEOREM OF BISHOP AND
PHELPS

BELA BOLLOBAS

Bishop and Phelps proved in [1] that every real or complex Banach space is
subreflexive, that is the functionals (real or complex) which attain their supremum
on the unit sphere of the space are dense in the dual space. We shall sharpen this
result and then apply it to a problem about the numerical range of an operator.

Denote by S and S' the unit spheres in a Banach space B and its dual space B',
respectively.

THEOREM 1. Suppose xeS,fe S' and \f(x)~ 1| < e2/2 (0 < e < £). Then there
exist yeS and geS' such that g(y) = 1, \\f— g\\ ^ e and \\x—y\\ < e+e2.

Proof. Our first proof was rather complicated but we discovered later that a
slight improvement of the proof in [1] gives this stronger result. This "proof" is
presented here.

Naturally it is sufficient to verify the theorem for real Banach spaces and real
functionals.

It is actually proved, only not explicitly stated, in [1] that ifz e S,/e S' and/(z) > 0
then there exists g e S' which attains its supremum on the unit sphere at some point
xoeS,

2 + e
\\f-g\\ ^e and \\xo-z\\ ^ ^y - r

Naturally here 0 ^/(x0—z) ^ 1—/(z). So putting x = z, y = x0 we know that
there are y e S, g e S' such that g(y) = 1,

2 + e e2

| | / -g | | <6 and | , - , | < £ ( 1 _ ( £ 2 / 2 ) ) - j - < . + «».

Remark. Theorem 1 is best possible in the following sense. For any 0 < e < 1
there exist a Banach space B, point xeS and functional feS' such that
f(x) = 1 - (e2/2) but if y e S, g e S' and g(y) = 1 then either | | / - g | | ^ e or \\x-y\\ ^ e.

Proof. Turn R2 into a real Banach space by taking the following unit ball:

{(a,b): - 1 ^a + (l-e)b^ 1, - l ^ b ^ l }

Let f{a,b) = (e/2)a+(l-(e2/2))b and take x = (0, 1). Then | | / | | = 1,
f(x) = 1 —(e2/2) and it is immediate that if geS', \\f— g\\ < e then g must attain its
supremum at the same point as/, at (e, 1), which is of distance £ from x.

Let T be a bounded linear operator in a complex Banach space B. The numerical
range of T is defined as V(T) = {f(Tx): xeS,feS',f(x) = 1} (see e.g. [2]).
Evidently V(T) £ V(T') where T is the adjoint of T, and it is known that this

Received 17 November, 1969.
[BULL. LONDON MATH. SOC, 2 (1970), 181-182]

Corollary. . . the way it is oftentimes presented

Given 1
2 > ε > 0, if x0 ∈ SX and x∗ ∈ SX ∗ are such that

|x∗(x0)|> 1− ε2

4
,

then there are u0 ∈ SX and y∗ ∈ SX ∗ such that

|y∗(u0)|= 1,‖x0−u0‖< ε and ‖x∗−y∗‖< ε.

B. Cascales Asplund operators. Bishop-Phelps-Bollobás



Presentation
Bishop-Phelps property

Bishop-Phelps-Bollobás property
Our result

Bollobás observation to Bishop-Phelps theorem
Brondsted-Rockafellar variational principle
Bishop-Phelps-Bollobás property for operators

A variational principle implying BPB

Corollary. . . the constants are better
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Bishop-Phelps-Bollobás Property for operators

Definition: Acosta, Aron, Garćıa and Maestre, 2008

(X ,Y ) is said to have the
Bishop-Phelps-Bollobás property (BPBP)
if for any ε > 0 there are η(ε) > 0 such
that for all T ∈ SL(X ,Y ), if x0 ∈ SX is
such that

‖T (x0)‖> 1−η(ε),

then there are u0 ∈ SX , S ∈ SL(X ,Y ) with

‖S(u0)‖= 1

and

‖x0−u0‖< ε and ‖T −S‖< ε.

1 Y has certain almost-biorthogonal
system (X ,Y ) has BPBp any X ;

2 (`1,Y ) BPBp is characterized
through a condition called AHSP:
it holds for Y finite dimensional,
uniformly convex, Y = L1(µ) for a
σ -finite measure or Y = C(K);

3 there is pair (`1,X ) failing BPBp,
but having BPp;

4 (`∞
n ,Y ) has BPBp Y uniformly

convex no hope for c0:
η(ε) = η(n,ε)→ 1 with n→ ∞.

PROBLEM?

No Y infinite dimensional was
known s.t. (c0,Y ) has BPBP.
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Our main result

Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let A⊂ C (K ) be a uniform algebra and T : X → A be an Asplund
operator with ‖T‖= 1. Suppose that 0 < ε <

√
2 and x0 ∈ SX are

such that ‖Tx0‖> 1− ε2

2 . Then there exist u0 ∈ SX and an

Asplund operator T̃ ∈ SL(X ,A) satisfying that

‖T̃ u0‖= 1,‖x0−u0‖ ≤ ε and ‖T − T̃‖< 2ε.
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Asplund operators

Stegall, 1975

An operator T ∈ L(X ,Y ) is Asplund, if it factors through an
Asplund space:

X
T //

T1 ��@
@@

@@
@@

@ Y

Z

T2

??~~~~~~~~

Z is Asplund; T1 ∈ L(X ,Z ) and T2 ∈ L(Z ,Y ).

T Asplund operator ⇔ T ∗(BY ∗) is fragmented by the norm of X ∗.

B. Cascales Asplund operators. Bishop-Phelps-Bollobás
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Aplications

The black box. . . fragmentability

�
d−diam(S ∩ U) ≤ ε

S

U

‖·‖−diam(U ∩S)≤ ε

Asplund spaces: Namioka, Phelps and Stegall

Let X be a Banach space. Then the following
conditions are equivalent:

(i) X is an Asplund space, i.e., whenever f is a
convex continuous function defined on an
open convex subset U of X , the set of all
points of U where f is Fréchet differentiable
is a dense Gδ -subset of U.

(ii) every w∗-compact subset of (X ∗,w∗) is
fragmented by the norm;

(iii) each separable subspace of X has separable
dual;

(iv) X ∗ has the Radon-Nikodým property.

B. Cascales Asplund operators. Bishop-Phelps-Bollobás
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An idea of the proof for A = C (K )

Theorem (R. M. Aron, O. Kozhushkina and B. C. 2011)

Let T : X → C(K) be an Asplund operator with ‖T‖= 1. Suppose that 0 < ε <
√

2 and x0 ∈ SX are such that

‖Tx0‖> 1− ε2

2 . Then there exist u0 ∈ SX and an Asplund operator T̃ ∈ SL(X ,C(K)) satisfying that

‖T̃u0‖= 1,‖x0−u0‖ ≤ ε and ‖T − T̃‖< 2ε.

1 Black box provides a suitable open set U ⊂ K , y∗ ∈ SX ∗ and ρ < 2ε with

1 = |y∗(u0)|= ‖u0‖ and ‖x0−u0‖< ε & ‖T ∗(δt)−y∗‖< ρ ∀t ∈ U

2 Uryshon’s lemma that applied to an arbitrary t0 ∈ U produces a function
f ∈ C(K) satisfying

f (t0) = ‖f ‖∞ = 1, f (K)⊂ [0,1] and supp(f )⊂ U.

3 T̃ is explicitly defined by

T̃ (x)(t) = f (t) ·y∗(x) + (1− f (t)) ·T (x)(t), x ∈ X , t ∈ K ,

4 The suitability of U is used to prove that ‖T − T̃‖< 2ε.

B. Cascales Asplund operators. Bishop-Phelps-Bollobás
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Let T : X →A be an Asplund operator with ‖T‖= 1. Suppose that 0 < ε <
√

2 and x0 ∈ SX are such that

‖Tx0‖> 1− ε2

2 . Then there exist u0 ∈ SX and an Asplund operator T̃ ∈ S
L(X ,A

(
D
)

)
satisfying that

‖T̃u0‖= 1,‖x0−u0‖ ≤ ε and ‖T − T̃‖< 2ε.

1 Black box gives an open set , U ∩T 6= /0, y∗ ∈ SX ∗ & ρ < 2ε with

1 = |y∗(u0)|= ‖u0‖ and ‖x0−u0‖< ε & ‖T ∗(δt)−y∗‖< ρ ∀t ∈ U.

2 Uryshon’s lemma that applied to an arbitrary t0 ∈ U ∩T produces a
function f ∈ A

(
D
)

satisfying

f (t0) = ‖f ‖∞ = 1, f (D)⊂ Rε and f small in D\U.

3 T̃ is explicitly defined by

T̃ (x)(t) = f (t) ·y∗(x) + (1− ε
′)(1− f (t)) ·T (x)(t)

4 The suitability of U is used to prove that ‖T − T̃‖< 2ε.
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whenever X is an Asplund space and C(K) is the space of continuous functions
defined on a compact Hausdorff space K: this result provided the first examples of
pairs of the kind (c0, Y ) with BPBp for Y infinite dimensional Banach space. Our
aim here is to extend and sharpen the results of [2] and prove the following:

Theorem 3.6. Let A ⊂ C(K) be a uniform algebra and T : X → A be an Asplund
operator with �T� = 1. Suppose that 0 < ε <

√
2 and x0 ∈ SX are such that

�Tx0� > 1− ε2

2 . Then there exist u0 ∈ SX and an Asplund operator �T ∈ SL(X,A)

satisfying that

� �Tu0� = 1, �x0 − u0� ≤ ε and �T − �T� < 2ε.

For A = C(K) the above result was proved in [2, Theorem 2.4] with worse esti-
mates. The key points for the known proof when A = C(K) were, on one hand,
the asplundness of T hidden in Lemma 2.3 of [2] that led to a suitable open set
U ⊂ K and, on the other hand, the Uryshon’s lemma that applied to an arbitrary
t0 ∈ U produces a function f ∈ C(K) satisfying

f(t0) = �f�∞ = 1, f(K) ⊂ [0, 1] and supp(f) ⊂ U.

With all this setting, �T was explicitly defined by

�T (x)(t) = f(t) · y∗(x) + (1 − f(t)) · T (x)(t), x ∈ X, t ∈ K, (1.1)

where y∗ ∈ SX∗ was chosen satisfying, amongst other things, 1 = |y∗(u0)| =
�u0� and �x0−u0� < ε. The provisos about y∗ and f were used then to prove that
T and �T were close and that 1 = � �T� = � �Tu0�. Solely with the details above, the
reader should be able to prove indeed that 1 = � �T� = � �Tu0� but he or she will
have to make use of the fact that f(K) ⊂ [0, 1]. Once this is said, it becomes clear
that the arguments above cannot work for a proof of Theorem 3.6 for a general
uniform algebra A ⊂ C(K). Certainly, A could be too rigid (for instance the disk
algebra) to allow the construction of f ∈ A peaking at t0 and with f(K) ⊂ [0, 1].
To overcome these difficulties we prove Lemma 2.8 below about the existence of
peak functions f ∈ A that are small outside an open set and with f(K) contained
in a small rhombus

Rε := {z ∈ C : |Re(z) − 1/2| + (1/
√
ε)|Im(z)| ≤ 1/2}

with main diagonal [0, 1], that in its turn is contained in the Stolz’s domain

Stε = {z ∈ D : |z| + (1 − ε)|1 − z| ≤ 1}.

Lemma 2.8. Let A ⊂ C(K) be a unital uniform algebra and Γ0 its Choquet
boundary. Then, for every open set U ⊂ K with U ∩ Γ0 �= ∅ and 0 < ε < 1, there
exist f ∈ A and t0 ∈ U ∩ Γ0 such that f(t0) = �f�∞ = 1, |f(t)| < ε for every
t ∈ K \ U and f(K) ⊂ Rε. In particular,

|f(t)| + (1 − ε)|1 − f(t)| ≤ 1, for all t ∈ K. (2.8)

With this in mind we appeal at the full power of Lemma 2.3 of [2], that is also
suited for a boundary instead of K, to produce U and then modify the definition of
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Theorem (A. J. Guirao, V.
Kadets and B. C. 2012)

Let A⊂ C(K) be a uniform
algebra and T : X →A be an
Asplund operator with ‖T‖= 1.
Suppose that 0 < ε <

√
2 and

x0 ∈ SX are such that

‖Tx0‖> 1− ε2

2 . Then there
exist u0 ∈ SX and an Asplund

operator T̃ ∈ SL(X ,A) satisfying

that

‖T̃u0‖= 1,‖x0−u0‖ ≤ ε

and
‖T − T̃‖< 2ε.

Corollary

Let T ∈ L(X ,C0(L)) weakly compact with ‖T‖= 1,
1
2 > ε > 0, and x0 ∈ SX be such that

‖T (x0)‖> 1− ε2

4
.

Then there are u0 ∈ SX and S ∈ L(X ,C0(L)) weakly compact
with ‖S‖= 1 satisfying

‖S(u0)‖= 1,‖x0−u0‖< ε and ‖T −S‖ ≤ 3ε.

Corollary

(X ,C0(L)) has the BPBP for any Asplund space X and any
locally compact Hausdorff topological space L (X = c0(Γ), for
instance).

Corollary

(X ,C0(L)) has the BPBP for any X and any scattered locally
compact Hausdorff topological space L.
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Kadets and B. C. 2012)

Let A⊂ C(K) be a uniform
algebra and T : X →A be an
Asplund operator with ‖T‖= 1.
Suppose that 0 < ε <

√
2 and

x0 ∈ SX are such that

‖Tx0‖> 1− ε2

2 . Then there
exist u0 ∈ SX and an Asplund

operator T̃ ∈ SL(X ,A) satisfying

that

‖T̃u0‖= 1,‖x0−u0‖ ≤ ε

and
‖T − T̃‖< 2ε.

Corollary

Let T ∈ L(X ,A
(
D
)
) weakly compact with ‖T‖= 1,

1
2 > ε > 0, and x0 ∈ SX be such that

‖T (x0)‖> 1− ε2

4
.

Then there are u0 ∈ SX and S ∈ L(X ,A
(
D
)
) weakly compact

with ‖S‖= 1 satisfying

‖S(u0)‖= 1,‖x0−u0‖< ε and ‖T −S‖ ≤ 3ε.

Remark

The theorem applies in particular to the ideals of finite rank
operators F , compact operators K , p-summing operators Πp

and of course to the weakly compact operators W themselves.
To the best of our knowledge even in the case W (X ,A) the
Bishop-Phelps property that follows is a brand new result.
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