A complex Urysohn type lemma with applications

B. Cascales

http://webs.um.es/beca

Colloquium Seminar at Kent State University Kent, OH. October 11th, 2012

Unión Europea
Fondo Europeo de
Desarrollo Regional

- **3** First part: The need of the complex Urysohn type lemma.
 - Our result(s) in Functional Analysis needs the lemma.

- 3 First part: The need of the complex Urysohn type lemma.
 - Our result(s) in Functional Analysis needs the lemma.

5 Third part: Applications (by others).

- 3 First part: The need of the complex Urysohn type lemma.
 - Our result(s) in Functional Analysis needs the lemma.
- 4 Second part: Complex Urysohn type lemma: a few pictures.
- **5** Third part: Applications (by others).

- 3 First part: The need of the complex Urysohn type lemma.
 - Our result(s) in Functional Analysis needs the lemma.
 - A bit of history of the problems in FA above. People involved.
- 4 Second part: Complex Urysohn type lemma: a few pictures.
- 5 Third part: Applications (by others).

- 3 First part: The need of the complex Urysohn type lemma.
 - Our result(s) in Functional Analysis needs the lemma.
 - A bit of history of the problems in FA above. People involved.
- 4 Second part: Complex Urysohn type lemma: a few pictures.
- **5** Third part: Applications (by others).
- What should you take home with you?.

- 2 The topological ideas behind the scenes.
- 3 First part: The need of the complex Urysohn type lemma.
 - Our result(s) in Functional Analysis needs the lemma.
 - A bit of history of the problems in FA above. People involved.
- 4 Second part: Complex Urysohn type lemma: a few pictures.
- **1 Third part:** Applications (by others).
- What should you take home with you?.

- Co-authors
- 2 The topological ideas behind the scenes.
- **3** First part: The need of the complex Urysohn type lemma.
 - Our result(s) in Functional Analysis needs the lemma.
 - A bit of history of the problems in FA above. People involved.
- 4 Second part: Complex Urysohn type lemma: a few pictures.
- **5** Third part: Applications (by others).
- What should you take home with you?.

Co-authors

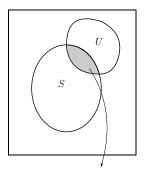
Co-authors

R. M. Aron, B. Cascales and O. Kozhushkina, The Bishop-Phelps-Bollobás theorem and Asplund operators, Proc. Amer. Math. Soc. 139 (2011), no. 10, 3553–3560.

B. Cascales, A. J. Guirao and V. Kadets, A Bishop-Phelps-Bollobás type theorem for uniform algebras, Preprint. April/2012

Topology behind the scenes

Topology behind the scenes.



 $\|\cdot\| - \mathsf{diam}(U \cap S) \le \varepsilon$

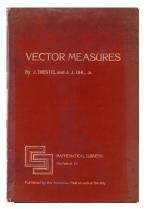
Asplund spaces: Namioka, Phelps and Stegall

Let X be a Banach space. Then the following conditions are equivalent:

- (i) X is an Asplund space, i.e., whenever f is a convex continuous function defined on an open convex subset U of X, the set of all points of U where f is Fréchet differentiable is a dense G_δ-subset of U.
- (ii) every w^* -compact subset of (X^*, w^*) is fragmented by the norm;
- (iii) each separable subspace of X has separable dual:
- (iv) X^* has the Radon-Nikodým property.

To learn about

RNP in Banach spaces read



Fragmentability Google NAMIOKA

Our result(s) in functional analysis: the need of the lemma

Our result(s)

Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let $\mathfrak{A}\subset C(K)$ be a uniform algebra and $T\colon X\to \mathfrak{A}$ be an Asplund operator with $\|T\|=1$. Suppose that $0<\varepsilon<\sqrt{2}$ and $x_0\in S_X$ are such that $\|Tx_0\|>1-\frac{\varepsilon^2}{2}$. Then there exist $u_0\in S_X$ and an Asplund operator $\widetilde{T}\in S_{L(X,\mathfrak{A})}$ satisfying that

$$\|\widetilde{T}u_0\| = 1, \|x_0 - u_0\| \le \varepsilon$$
 and $\|T - \widetilde{T}\| < 2\varepsilon$.

Theorem (R. M. Aron, O. Kozhushkina and B. C. 2011)

Let $T\colon X\to C(K)$ be an Asplund operator with $\|T\|=1$. Suppose that $0<\varepsilon<\sqrt{2}$ and $x_0\in S_X$ are such that $\|Tx_0\|>1-\frac{\varepsilon^2}{2}$. Then there exist $u_0\in S_X$ and an Asplund operator $\widetilde{T}\in S_{L(X,C(K))}$ satisfying that

$$\|\widetilde{T}u_0\| = 1, \|x_0 - u_0\| \le \varepsilon$$
 and $\|T - \widetilde{T}\| < 2\varepsilon$.

- **①** Closed vector subspace $A \subset C(K)$, with the properties:
 - the products of functions in A remains in A;
 - 1 ∈ A.
 - A separates the points of K.

- **①** Closed vector subspace $A \subset C(K)$, with the properties:
 - the products of functions in A remains in A;
 - 1 ∈ A.
 - A separates the points of K.
- ② In the real case, if A uniform algebra $\Rightarrow A = C(K)$.

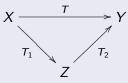
- **①** Closed vector subspace $A \subset C(K)$, with the properties:
 - the products of functions in A remains in A;
 - 1 ∈ A.
 - A separates the points of K.
- ② In the real case, if A uniform algebra $\Rightarrow A = C(K)$.
- **1** The complex case is different: the disk algebra $A(\mathbb{D})$.

- **①** Closed vector subspace $A \subset C(K)$, with the properties:
 - the products of functions in A remains in A;
 - 1 ∈ A.
 - A separates the points of K.
- ② In the real case, if A uniform algebra $\Rightarrow A = C(K)$.
- **3** The complex case is different: the disk algebra $A(\mathbb{D})$. Why the complex case can be different from the real case?

Asplund operators

Stegall, 1975

An **operator** $T \in L(X, Y)$ is **Asplund**, if it factors through an Asplund space:



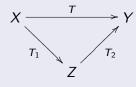
Z is Asplund; $T_1 \in L(X, Z)$ and $T_2 \in L(Z, Y)$.

T Asplund operator $\Leftrightarrow T^*(B_{Y^*})$ is fragmented by the norm of X^* .

Asplund operators

Stegall, 1975

An **operator** $T \in L(X, Y)$ is **Asplund**, if it factors through an Asplund space:



Z is Asplund; $T_1 \in L(X, Z)$ and $T_2 \in L(Z, Y)$.

T Asplund operator $\Leftrightarrow T^*(B_{Y^*})$ is fragmented by the norm of X^* .

Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let $\mathfrak{A}\subset C(K)$ be a uniform algebra and $T\colon X\to \mathfrak{A}$ be an Asplund operator with $\|T\|=1$. Suppose that $0<\varepsilon<\sqrt{2}$ and $x_0\in S_X$ are such that $\|Tx_0\|>1-\frac{\varepsilon^2}{2}$. Then there

 $||Tx_0|| > 1 - \frac{\epsilon}{2}$. Then there exist $u_0 \in S_X$ and an Asplund operator $\widetilde{T} \in S_{L(X,\mathfrak{A})}$ satisfying that

$$\|\widetilde{T}u_0\|=1,\|x_0-u_0\|\leq \varepsilon$$

and

$$\|\mathit{T}-\widetilde{\mathit{T}}\|<2\varepsilon.$$

Corollary

Let $T \in L(X,\mathfrak{A})$ weakly compact with ||T|| = 1, $\frac{1}{2} > \varepsilon > 0$, and $x_0 \in S_X$ be such that

$$||T(x_0)|| > 1 - \frac{\varepsilon^2}{4}.$$

Then there are $u_0 \in S_X$ and $S \in L(X,\mathfrak{A})$ weakly compact with ||S|| = 1 satisfying

$$||S(u_0)|| = 1, ||x_0 - u_0|| < \varepsilon \text{ and } ||T - S|| \le 2\varepsilon.$$

Corollary

 (X,\mathfrak{A}) has the BPBP for any Asplund space X and any locally compact Hausdorff topological space L $(X=c_0(\Gamma)$, for instance).

Corollary

 $(X, C_0(L))$ has the BPBP for any X and any scattered locally compact Hausdorff topological space L.

Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let $\mathfrak{A}\subset C(K)$ be a uniform algebra and $T\colon X\to \mathfrak{A}$ be an Asplund operator with $\|T\|=1$. Suppose that $0<\varepsilon<\sqrt{2}$ and $x_0\in S_X$ are such that $\|Tx_0\|>1-\frac{\varepsilon^2}{2}$. Then there exist $u_0\in S_X$ and an Asplund operator $T\in S_{L(X,\mathfrak{A})}$ satisfying that

$$\|\widetilde{T}u_0\|=1,\|x_0-u_0\|\leq \varepsilon$$

and

$$||T - \widetilde{T}|| < 2\varepsilon$$
.

Corollary

Let $T \in L(X, A(\mathbb{D}))$ weakly compact with ||T|| = 1, $\frac{1}{2} > \varepsilon > 0$, and $x_0 \in S_X$ be such that

$$||T(x_0)|| > 1 - \frac{\varepsilon^2}{4}.$$

Then there are $u_0 \in S_X$ and $S \in L(X, A(\mathbb{D}))$ weakly compact with ||S|| = 1 satisfying

$$||S(u_0)|| = 1, ||x_0 - u_0|| < \varepsilon \text{ and } ||T - S|| \le 2\varepsilon.$$

Remark

The theorem applies in particular to the ideals of finite rank operators \mathscr{F} , compact operators \mathscr{K} , p-summing operators Π_p and of course to the weakly compact operators \mathscr{W} themselves. To the best of our knowledge even in the case $\mathscr{W}(X,\mathfrak{A})$ the Bishop-Phelps property that follows is a brand new result.

Bishop-Phelps theorem

Theorem (Bishop-Phelps, 1961)

If X is a Banach, then $\overline{\mathbf{NAX}^*} = X^*$.

A PROOF THAT EVERY BANACH SPACE IS SUBREFLEXIVE

BY ERRETT BISHOP AND R. R. PHELPS

Communicated by Mahlon M. Day, August 19, 1960

A real or complex normed space is *subreflexive* if those functionals which attain their supremum on the unit sphere S of E are normdense in E^* , i.e., if for each f in E^* and each $\epsilon > 0$ there exist g in E^* and x in S such that |g(x)| = ||g|| and $||f-g|| < \epsilon$. There exist incomplete normed spaces which are not subreflexive $[1]^1$ as well as incomplete spaces which *are* subreflexive (e.g., a dense subspace of a Hilbert space). It is evident that every reflexive Banach space is sub-

The Bishop-Phelps property for operators

Definition

An operator $T: X \to Y$ is **norm attaining** if there exists $x_0 \in X$, $||x_0|| = 1$, such that $||T(x_0)|| = ||T||$.

Definition (Lindenstrauss)

(X,Y) has the Bishop-Phelps Property (BPp) if every operator $T:X\to Y$ can be uniformly approximated by **norm attaining** operators.

- ① (X, \mathbb{K}) has BPp for every X Bishop-Phelps (1961);
- 2 $\overline{\{T \in L(X;Y): T^{**} \in NA(X^{**}; Y^{**})\}} = L(X;Y)$ for every pair of Banach spaces X and Y, Lindenstrauss (1963);
- 3 X with RNP, then (X, Y) has BPp for every Y, Bourgain (1977);
- ① there are spaces X, Y and Z such that (X, C([0,1])), (Y, ℓ^p) $(1 and <math>(Z, L^1([0,1]))$ fail BPp, Schachermayer (1983), Gowers (1990) and Acosta (1999);
- **3** (C(K), C(S)) has BPp for all compact spaces K, S, Johnson and Wolfe, (1979).
- **1** $(L^1([0,1]), L^{\infty}([0,1]))$ has BPp, Finet-Payá (1998),

EXTENSION TO THE THEOREM OF BISHOP AND ANPHELPS

BÉLA BOLLOBÁS

Bishop and Phelps proved in [1] that every real or complex Banach space is subreflexive, that is the functionals (real or complex) which attain their supremum on the unit sphere of the space are dense in the dual space. We shall sharpen this result and then apply it to a problem about the numerical range of an operator.

respectively.

THEOREM 1. Suppose exist $y \in S$ and $g \in S'$ such

Denote by S and S' t Corollary... the way it is oftentimes presented

Given $\frac{1}{2} > \varepsilon > 0$, if $x_0 \in S_X$ and $x^* \in S_{X^*}$ are such that

$$|x^*(x_0)| > 1 - \frac{\varepsilon^2}{4},$$

then there are $u_0 \in S_X$ and $y^* \in S_{X^*}$ such that

$$|y^*(u_0)| = 1, ||x_0 - u_0|| < \varepsilon \text{ and } ||x^* - y^*|| < \varepsilon.$$

Bishop-Phelps-Bollobás Property for operators

Definition: Acosta, Aron, García and Maestre, 2008

(X,Y) is said to have the Bishop-Phelps-Bollobás property (BPBP) if for any $\varepsilon>0$ there are $\eta(\varepsilon)>0$ such that for all $T\in S_{L(X,Y)}$, if $x_0\in S_X$ is such that

$$||T(x_0)|| > 1 - \eta(\varepsilon),$$

then there are $u_0 \in S_X$, $S \in S_{L(X,Y)}$ with

$$||S(u_0)||=1$$

and

$$||x_0 - u_0|| < \varepsilon$$
 and $||T - S|| < \varepsilon$.

- Y has certain almost-biorthogonal system (X, Y) has BPBp any X;
- ② (ℓ^1, Y) BPBp is characterized through a condition called AHSP: it holds for Y finite dimensional, uniformly convex, $Y = L^1(\mu)$ for a σ -finite measure or Y = C(K);
- 3 there is pair (ℓ^1, X) failing BPBp, but having BPp;
- **③** (ℓ_n^{∞}, Y) has BPBp Y uniformly convex no hope for c_0 : $\eta(\varepsilon) = \eta(n, \varepsilon) \rightarrow 1$ with $n \rightarrow \infty$.

Bishop-Phelps-Bollobás Property for operators

Definition: Acosta, Aron, García and Maestre, 2008

(X,Y) is said to have the Bishop-Phelps-Bollobás property (BPBP) if for any $\varepsilon>0$ there are $\eta(\varepsilon)>0$ such that for all $T\in S_{L(X,Y)}$, if $x_0\in S_X$ is such that

$$||T(x_0)|| > 1 - \eta(\varepsilon),$$

then there are $u_0 \in S_X$, $S \in S_{L(X,Y)}$ with

$$||S(u_0)||=1$$

and

$$||x_0 - u_0|| < \varepsilon$$
 and $||T - S|| < \varepsilon$.

- Y has certain almost-biorthogonal system (X, Y) has BPBp any X;
- **2** (ℓ^1, Y) BPBp is characterized through a condition called AHSP: it holds for Y finite dimensional, uniformly convex, $Y = L^1(\mu)$ for a σ -finite measure or Y = C(K);
- 3 there is pair (ℓ^1, X) failing BPBp, but having BPp;
- (1) (ℓ_n^{∞}, Y) has BPBp Y uniformly convex no hope for c_0 : $\eta(\varepsilon) = \eta(n, \varepsilon) \to 1$ with $n \to \infty$.

PROBLEM?

No Y infinite dimensional was known s.t. (c_0, Y) has BPBP.

An idea of the proof for $\mathfrak{A} = C(K)$

Theorem (R. M. Aron, O. Kozhushkina and B. C. 2011)

Let $T\colon X\to C(K)$ be an Asplund operator with $\|T\|=1$. Suppose that $0<\varepsilon<\sqrt{2}$ and $x_0\in S_X$ are such that $\|Tx_0\|>1-\frac{\varepsilon^2}{2}$. Then there exist $u_0\in S_X$ and an Asplund operator $\widetilde{T}\in S_{L(X,C(K))}$ satisfying that

$$\|\,\widetilde{T}\,u_0\|=1, \|x_0-u_0\|\leq \varepsilon\quad\text{and}\quad \|\,T-\widetilde{T}\,\|<2\varepsilon.$$

1 Topological tools provide a suitable open set $U \subset K$, $y^* \in S_{X^*}$ and $\rho < 2\varepsilon$ with

$$1 = |y^*(u_0)| = \|u_0\| \text{ and } \|x_0 - u_0\| < \varepsilon \ \& \ \|T^*(\delta_t) - y^*\| < \rho \ \forall t \in U$$

2 Uryshon's lemma that applied to an arbitrary $t_0 \in U$ produces a function $f \in C(K)$ satisfying

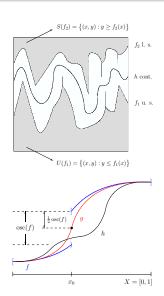
$$f(t_0) = ||f||_{\infty} = 1$$
, $f(K) \subset [0,1]$ and $supp(f) \subset U$.

 \widetilde{T} is explicitly defined by

$$\widetilde{T}(x)(t) = f(t) \cdot y^*(x) + (1 - f(t)) \cdot T(x)(t), x \in X, t \in K,$$

1 The suitability of U is used to prove that $||T - \widetilde{T}|| < 2\varepsilon$.

Just for the students: A few words about Uryshon's lemma



Normal spaces - Exercise for students

For a topological space T the following statements are equivalent:

- T is normal.
- \mathbf{Q} Urysohn's lemma holds for T.
- Tietze's extension theorem holds for T.
- 4 Katetov's "sandwich" theorem holds for T.
- **5** For every function $f \in \mathbb{R}^T$ the distance to $C_b(T)$ is given by

$$d(f,C_b(T))=\frac{1}{2}\operatorname{osc}(f).$$

An idea of the proof for $\mathfrak{A}=A(\mathbb{D})$

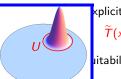
Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let $T\colon X \to A(\mathbb{D})$ be an Asplund operator with $\|T\|=1$. Suppose that $0<\varepsilon<\sqrt{2}$ and $x_0\in S_X$ are such that $\|Tx_0\|>1-\frac{\varepsilon^2}{2}$. Then there exist $u_0\in S_X$ and an Asplund operator $\widetilde{T}\in S_{L(X,A(\mathbb{D}))}$ satisfying that

$$\|\,\widetilde{T}\,u_0\|=1, \|x_0-u_0\|\leq \varepsilon\quad\text{and}\quad \|\,T-\widetilde{T}\,\|<2\varepsilon.$$

- **1 Topological tools** gives an open set $U \subset \overline{\mathbb{D}}$ $y^* \in S_{X^*}$ & $\rho < 2\varepsilon$ with $1 = |y^*(u_0)| = ||u_0||$ and $||x_0 u_0|| < \varepsilon$ & $||T^*(\delta_t) y^*|| < \rho \ \forall t \in U$.
- ② Uryshon's lemma that applied to an arbitrary $t_0 \in U$ produces a function $f \in A(\mathbb{D})$ satisfying

$$f(t_0) = \|f\|_{\infty} = 1, f(\overline{\mathbb{D}}) \subset [0,1] \text{ and } \operatorname{supp}(f) \subset U.$$



xplicitly defined by

$$\widetilde{T}(x)(t) = f(t) \cdot y^*(x) + (1 - f(t)) \cdot T(x)(t), x \in X, t \in \overline{\mathbb{D}},$$

iitability of U is used to prove that $\|T-\widetilde{T}\| < 2arepsilon.$

An idea of the proof for $\mathfrak{A}=A(\mathbb{D})$

Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let $T: X \to A(\mathbb{D})$ be an Asplund operator with $\|T\| = 1$. Suppose that $0 < \varepsilon < \sqrt{2}$ and $x_0 \in S_X$ are such that $\|Tx_0\| > 1 - \frac{\varepsilon^2}{2}$. Then there exist $u_0 \in S_X$ and an Asplund operator $\widetilde{T} \in S_{L(X,A(\mathbb{D}))}$ satisfying that

$$\|\widetilde{T}u_0\|=1, \|x_0-u_0\|\leq \varepsilon \quad \text{and} \quad \|T-\widetilde{T}\|<2\varepsilon.$$

1 Topological tools gives an open set , $U \cap \mathbb{T} \neq \emptyset$, $y^* \in S_{X^*} \& \rho < 2\varepsilon$ with $1 = |y^*(u_0)| = ||u_0|| \text{ and } ||x_0 - u_0|| < \varepsilon \& ||T^*(\delta_t) - y^*|| < \rho \ \forall t \in U.$

② Uryshon's lemma that applied to an arbitrary $t_0 \in U \cap \mathbb{T}$ produces a function $f \in A(\mathbb{D})$ satisfying

$$f(t_0) = ||f||_{\infty} = 1, f(\overline{\mathbb{D}}) \subset R_{\mathcal{E}'} \text{ and } f \text{ small in } \overline{\mathbb{D}} \setminus U.$$

 \bullet T is explicitly defined by

$$\widetilde{T}(x)(t) = f(t) \cdot y^*(x) + (1 - \varepsilon')(1 - f(t)) \cdot T(x)(t)$$

• The suitability of U is used to prove that $||T - \widetilde{T}|| < 2\varepsilon$.

An idea of the proof for $\mathfrak{A} = A(\mathbb{D})$

Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let $T: X \to A(\mathbb{D})$ be an Asplund operator with $\|T\| = 1$. Suppose that $0 < \varepsilon < \sqrt{2}$ and $x_0 \in S_X$ are such that $\|Tx_0\| > 1 - \frac{\varepsilon^2}{2}$. Then there exist $u_0 \in S_X$ and an Asplund operator $\widetilde{T} \in S_{L(X,A(\mathbb{D}))}$ satisfying that

$$\|\widetilde{T}u_0\|=1, \|x_0-u_0\|\leq \varepsilon \quad \text{and} \quad \|T-\widetilde{T}\|<2\varepsilon.$$

- **1** Topological tools gives an open set , $U \cap \mathbb{T} \neq \emptyset$, $y^* \in S_{X^*} \& \rho < 2\varepsilon$ with $1 = |y^*(u_0)| = ||u_0|| \text{ and } ||x_0 u_0|| < \varepsilon \& ||T^*(\delta_t) y^*|| < \rho \ \forall t \in U.$
- ② Uryshon's lemma that applied to an arbitrary $t_0 \in U \cap \mathbb{T}$ produces a function $f \in A(\mathbb{D})$ satisfying

$$f(t_0) = \|f\|_{\infty} = 1$$
, $f(\overline{\mathbb{D}}) \subset R_{\mathcal{E}'}$ and f small in $\overline{\mathbb{D}} \setminus U$.

explicitly defined by

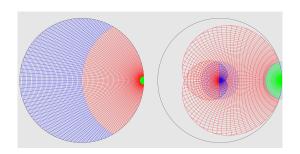
$$\widetilde{T}(x)(t) = f(t) \cdot y^*(x) + (1 - \varepsilon')(1 - f(t)) \cdot T(x)(t)$$

suitability of U is used to prove that $\|T - \widetilde{T}\| < 2arepsilon.$

Complex Urysohn type lemma: a few pictures

 $U \overset{open}{\subset} \overline{\mathbb{D}}, 1 \in U, \exists f(1) = \|f\|_{\infty} = 1, f(\overline{\mathbb{D}}) \subset R_{\varepsilon'} \text{ and } f \text{ small in } \overline{\mathbb{D}} \setminus U,$

$$f_n(z) := \left(\frac{z+1}{2}\right)^n$$

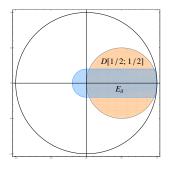


 $U \overset{\mathit{open}}{\subset} \overline{\mathbb{D}}, \, 1 \in U, \, \exists f(1) = \|f\|_{\infty} = 1, \, f(\overline{\overline{\mathbb{D}}}) \subset R_{\mathcal{E}'} \, \, \mathsf{and} \, \, f \, \, \mathsf{small} \, \, \mathsf{in} \, \, \overline{\overline{\mathbb{D}}} \setminus U,$

$$f_n(z) := \left(\frac{z+1}{2}\right)^n$$

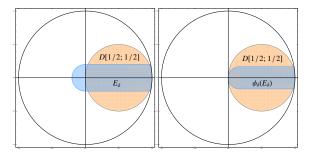
$$\exists n_1, n_2, \ldots, n_k$$

$$f := \frac{f_{n_1} + f_{n_2} + \dots + f_{n_2}}{k}$$



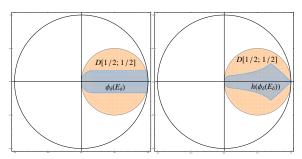
 $U \overset{open}{\subset} \overline{\mathbb{D}}, 1 \in U, \exists f(1) = \|f\|_{\infty} = 1, f(\overline{\mathbb{D}}) \subset R_{\mathcal{E}'} \text{ and } f \text{ small in } \overline{\mathbb{D}} \setminus U,$

$$z \to \frac{z+\delta}{1+\delta}$$



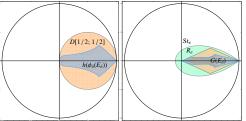
 $U \overset{open}{\subset} \overline{\mathbb{D}}, 1 \in U, \exists f(1) = \|f\|_{\infty} = 1, f(\overline{\mathbb{D}}) \subset R_{\mathcal{E}'} \text{ and } f \text{ small in } \overline{\mathbb{D}} \setminus U,$

$$z \rightarrow 1 - \sqrt{1-z}$$



 $U\stackrel{open}{\subset}\overline{\mathbb{D}},\,1\in U,\,\exists f(1)=\|f\|_{\infty}=1,\,f(\overline{\overline{\mathbb{D}}})\subset R_{\mathcal{E}'} ext{ and }f ext{ small in }\overline{\overline{\mathbb{D}}}\setminus U,$

Riemann conformal mapping



Our Uryshon type lemma is suited for calculations with a computer.

Why can we use the computer? Because of the provided proofs.

$$f_n(z) := \left(\frac{z+1}{2}\right)^n$$

$$\exists n_1, n_2, \ldots, n_k$$

$$f:=\frac{f_{n_1}+f_{n_2}+\cdots+f_{n_2}}{k}$$

Proof. Let us fix $0 < \eta < \min\{\delta/6, 1/2\}$ and $n \in \mathbb{N}, n > \frac{2}{\eta}$. Let us define $U_1 := U$. We shall construct inductively a collection of points $\{t_j\}_{j=1}^n$, a decreasing finite sequence $\{U_j\}_{j=1}^{n+1}$ of open subsets of U, $t_j \in U_{j+1} \cap \Gamma_0$, and functions $\{f_j\}_{j=1}^n \subset A$, satisfying for any $j \in \{1, \dots, n\}$ the following conditions:

(i)
$$f_i(t_i) = 1$$
.

(ii)
$$|f_j(t)| < \frac{\eta}{2}$$
 for $t \in K \setminus U_j$.

(iii)
$$|f_j(t) - 1| < \frac{\eta}{2}$$
 for $t \in U_{j+1}$.

Indeed, Lemma 2.1 allows us to find a norm one function $f_1\in A$ and a $t_1\in U_1\cap\Gamma_0$ such that $f_1(t_1)=1$ and $|f_1(t)|<\frac{\eta}{2}$ for $t\in K\setminus U_1\dots$ THE PROOF GOES ON

. .

1+4+1 applications

- (1) The one already presented for the BPBp by Guirao-Kadets-Cascales;
- In the unfinished paper

SOME GEOMETRIC PROPERTIES ON DISK ALGEBRAS

YUN SUNG CHOI, DOMINGO GARCÍA, SUN KWANG KIM AND MANUEL MAESTRE

- (2) Daugavet prop.;
- (3) Lusheness;
- (4) Numerical radius;
- (5) AHSP.
- ullet (6) in the Ph. dissertation by O. Kozhushkina for BPBp for $\mathfrak{A}(K,Y)$

What should you take home with you?

What should you take home with you?

The grad students should take home the exercises, at least!!!

Thank you