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Topology behind the scenes.

Asplund spaces: Namioka, Phelps and Stegall

Let X be a Banach space. Then the following
conditions are equivalent:

(i) X is an Asplund space, i.e., whenever f is a
convex continuous function defined on an
open convex subset U of X, the set of all
points of U where f is Fréchet differentiable
is a dense Gg-subset of U.

(ii) every w*-compact subset of (X*, w*) is
fragmented by the norm;

/ (iii) each separable subspace of X has separable

|I]| —diam(UNS) < e dual;
(iv) X* has the Radon-Nikodym property.
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Our result(s)

Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let 2l € C(K) be a uniform algebra and T: X — 2 be an Asplund operator
with || T|| = 1. Suppose that 0 < & < v/2 and xg € Sx are such that
| T>ol| >1— % Then there exist ug € Sx and an Asplund operator

T € S (x ) satisfying that

| Tuoll =1,|Ix0—uol| <& and ||T—T| < 2e.

Theorem (R. M. Aron, O. Kozhushkina and B. C. 2011)

Let T: X — C(K) be an Asplund operator with || T|| = 1. Suppose that
0 < &< +/2and xp € Sx are such that || Txo| >1— % Then there exist
ug € Sx and an Asplund operator T € SL(X7C(K)) satisfying that

ITuol =1, [x0—wol <& and [|T—T| <2
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Our result(s) in functional analysis: the need of the lemma A bit of history of the problems in FA. People involved.
Urysohn’s lemma plays its p1|t
An idea of the proof for 2

Recall that...

Uniform algebra

@ Closed vector subspace A C C(K), with the properties:
e the products of functions in A remains in A;
o either 1 € A or A distinguishes the points of K.
o A separates the points of K.
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Recall that...

Uniform algebra

@ Closed vector subspace A C C(K), with the properties:

e the products of functions in A remains in A;
o either 1 € A or A distinguishes the points of K.
o A separates the points of K.

@ In the real case, if A uniform algebra = A= C(K).
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Urysohn’s lemma plays its part
An idea of the proof for 2l = A(D)

Recall that...

Uniform algebra

@ Closed vector subspace A C C(K), with the properties:

e the products of functions in A remains in A;
o either 1 € A or A distinguishes the points of K.
o A separates the points of K.

@ In the real case, if A uniform algebra = A= C(K).
© The complex case is different: the disk algebra A(D).
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Asplund operators

Stegall, 1975

An operator T € L(X,Y) is Asplund, if it factors through an
Asplund space:
-

NS

Z

X

Y

Zis Asplund; Ty € L(X,Z) and T € L(Z,Y).

T Asplund operator < T*(By+) is fragmented by the norm of X*.J
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Asplund operators

Stegall, 1975

An operator T € L(X,Y) is Asplund, if it factors through an
Asplund space:

Zis Asplund; Ty € L(X,Z) and T2 € L(Z,Y).

T Asplund operator < T*(By+) is fragmented by the norm of X*.J

B. Cascales A complex Urysohn type lemma



Bishop-Phelps-Bollobas property

Our result(s) in functional analysis: the need of the lemma A bit of history of the problems in FA. People involved.
Urysohn’s lemma plays its part

An idea of the proof for 2l = A(D)

Theorem (A

Kadets and

Let A ¢ C(K) be a uniform
algebra and T: X — 2 be an
Asplund operator with || T|| = 1.
Suppose that 0 < € < v/2 and
Xp € Sx are such that

|| Txoll >1— % Then there
exist ug € Sx and an Asplund
operator T € SL(X,QI) satisfying
that

[ Tuoll=1,]Ix0 — uoll < &

and _
[|T—T| <2e.

Corollary

Let T € L(X,2) weakly compact with || T||=1, 1>e&>0,
and xg € Sx be such that

g2

ITGo)l >1-5

Then there are up € Sx and S € L(X,2) weakly compact
with ||S|| =1 satisfying

IS(uo)ll =1, l[x0 — o]l <& and || T — S| < 2e.

Corollary

(X,20) has the BPBP for any Asplund space X and any locally
compact Hausdorff topological space L (X = ¢o(I), for
instance).

Corollary

(X, Co(L)) has the BPBP for any X and any scattered locally
compact Hausdorff topological space L.
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An idea of the proof for A = A(D)

Corollary

Theorem (A

Kadets and

Let 20 € C(K) be a uniform
algebra and T: X — 2 be an
Asplund operator with || T|| = 1.
Suppose that 0 < € < v/2 and
Xg € Sx are such that

2
[ Txol| > 1— % . Then there
exist ug € Sx and an Asplund
operator T € 5)(x o) satisfying
that

[[Tuoll =1,llx0 —wol <&

and _
IT—TJ <2e.

Let T € L(X,A(D)) weakly compact with || T| =1,
% >¢€ >0, and xg € Sx be such that

2
€
ITCo)ll > 15

Then there are ug € Sx and S € L(X,A(ID)) weakly compact
with ||S|| =1 satisfying

IS(uo)ll =1, [x0 — o[l <& and || T — S| < 2e.

The theorem applies in particular to the ideals of finite rank
operators %, compact operators %, p-summing operators I,
and of course to the weakly compact operators # themselves.
To the best of our knowledge even in the case #/(X,2) the
Bishop-Phelps property that follows is a brand new result.

B. Cascales A complex Urysohn type lemma



Bishop-Phelps-Bollobas property

Our result(s) in functional analysis: the need of the lemma A bit of history of the problems in FA. People involved.
Urysohn’s lemma plays its part
An idea of the proof for 2l = A(D)

Bishop-Phelps theorem

Theorem (Bishop-Phelps, 1961)
If X is a Banach, then NAX* = X*.

A PROOF THAT EVERY BANACH SPACE IS
SUBREFLEXIVE

BY ERRETT BISHOP AND R. R. PHELPS
Communicated by Mahlon M. Day, August 19, 1960

A real or complex normed space is subreflexive if those functionals
which attain their supremum on the unit sphere S of E are norm-
dense in E¥*, i.e., if for each f in E* and each €>0 there exist g in
E* and x in S such that |g(x)| =||g|| and ||f—¢g|| <e. There exist in-
complete normed spaces which are not subreflexive [1]! as well as
incomplete spaces which are subreflexive (e.g., a dense subspace of a
Hilbert space). It is evident that every reflexive Banach space is sub-
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The Bishop-Phelps property for operators

Q (X,K) has BPp for every X

Definition : Bishop-Phelps (1961);

An operato.r T : X —Yis Q [TEL(X.Y): T~ € NA(X™;Y=)] =

norm attaining if there L(X;Y) for every pair of Banach spaces

exists xg € X, ||x0|| =1, X and Y, Lindenstrauss (1963);

such that || T(xo)|| = || T © X with RNP, then (X, Y) has BPp for
every Y, Bourgain (1977);

Definition (Lindenstrauss) @ there are spaces X, Y and Z such that
(X, C(]0,1])), (Y,¢P) (1 < p <o) and

(X,Y) has the (Z,11([0,1])) fail BPp, Schachermayer

Bishop-Phelps Property (1983), Gowers (1990) and Acosta

(BPp) if every operator (1999);

T:X =Y can be @ (C(K),C(S)) has BPp for all compact

uniformly approximated by spaces K, S, Johnson and Wolfe, (1979).

norm attaining operators. O (L*([0.1]),L=([0,1])) has BPp,

Finet-Pay4 (1998),
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Bollobas observation, 1970

AN EXTENSION TO THE THEOREM OF BISHOP AND
PHELPS

BELA BOLLOBAS

Bishop and Phelps proved in [1] that every real or complex Banach space is
subreflexive, that is the functionals (real or complex) which attain their supremum
on the unit sphere of the space are dense in the dual space. We shall sharpen this
result and then apply it to a problem about the numerical range of an operator.

Denote by § and §' t Corollary. . . the way it is oftentimes presented
respectively.

TheoREM 1. Suppose Given % >¢€ >0, if xp € Sx and x* € Sx« are such that

exist yeS and ge S’ such £2
[x*(x0)| >1— T

then there are ug € Sx and y* € Sx+ such that

ly*(uo)| =1,|1x0 — uol| < € and || x* —y*|| < €.
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Bishop-Phelps-Bollobas Property for operators

@ VY has certain almost-biorthogonal

Definition: Acosta, Aron, Garcia and Maestre, 2008 system (X, Y) has BPBp any X;
().<’ Y) is said to have,the @ (/1,Y) BPBp is characterized
Bishop-Phelps-Bollobds property (BPBP) through a condition called AHSP:
if for any &> 0 there are 1(€) > 0 such it holds for Y finite dimensional,
that for all T € 5;(x y), if xo € Sx is uniformly convex, Y = L1(u) for a
such that o-finite measure or Y = C(K);

| T(x0)ll >1—n(e), @ there is pair (1, X) failing BPBp,

but having BPp;

Q (¢3,Y) has BPBp Y uniformly
IS (uw)| =1 convex no hope for <o
n(e) =n(n,€) = 1 with n — .

then there are ug € Sx, S € 5/(x,y) with

and

o —uol| <€ and ||T-5| <e.
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Bishop-Phelps-Bollobas Property for operators

@ VY has certain almost-biorthogonal

Definition: Acosta, Aron, Garcia and Maestre, 2008 system (X, Y) has BPBp any X;
().<’ Y) is said to have,the @ (/1,Y) BPBp is characterized
Bishop-Phelps-Bollobds property (BPBP) through a condition called AHSP:
if for any &> 0 there are 1(€) > 0 such it holds for Y finite dimensional,
that for all T € 5;(x y), if xo € Sx is uniformly convex, Y = L1(u) for a
such that o-finite measure or Y = C(K);

| T(x0)ll >1—n(e), @ there is pair (1, X) failing BPBp,

but having BPp;

Q (¢3,Y) has BPBp Y uniformly
IS (uw)| =1 convex no hope for <o
n(e) =n(n,€) = 1 with n — .

then there are ug € Sx, S € 5/(x,y) with

and

PROBLEM?

No Y infinite dimensional was
known s.t. (co, Y) has BPBP.

o —uol| <€ and ||T-5| <e.
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An idea of the proof for 2 = C(K)

Theorem (R. M. Aron, O. Kozhushkina and B. C. 2011)

Let T: X — C(K) be an Asplund operator with || T|| = 1. Suppose that 0 < &€ < /2 and xq € Sx are such that
2 ~
[ Txol| > 1— % . Then there exist ug € Sx and an Asplund operator T € Si(x,c(k)) satisfying that

[Tuoll =1,lx0—uoll <& and ||T—T<2e.

@ Topological tools provide a suitable open set U C K, y* € Sx+ and
p < 2¢ with

1= y*(uo)| = lluoll and [|x0 —wo < & & [|T"(8:) —y*|| <pVte U

@ Uryshon's lemma that applied to an arbitrary tg € U produces a function
f € C(K) satisfying

f(to) = ||f]le =1, f(K) C[0,1] and supp(f) C U.
@ T is explicitly defined by
T(x)(t) = F(t)-y* (x)+ (1= F(t))- T(x)(t), x € X, t € K,

@ The suitability of U is used to prove that || T — T < 2e.
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A few words about Uryshon's lemma

Normal spaces - Exercise for
students

i cont. For a topological space T the
following statements are equivalent:
frus
© T is normal.

@ Urysohn's lemma holds for T.

© Tietze's extension theorem
U(f) ={(x,9) 1y < fil2)} h0|ds fOr T

@ Katetov's “sandwich” theorem
holds for T.

@ For every function f e RT the
distance to Cp(T) is given by

d(f, Co(T)) = %osc(f).

o X=[0,1]
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Our result(s) in functional analysis: the need of the lemma

An idea of the proof for A = A(D)
Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let T: X — A(D) be an Asplund operator with || T||=1. Suppose that 0 < & < /2 and xg € Sx are such that

2
€ satisfying that

[[Txoll > 1— % . Then there exist ug € Sx and an Asplund operator Te SL(X.A(]D))

[Tuoll =1,]x0—uoll <& and ||T—T<2e.

@ Topological tools gives an open set U C D y* € Sx- & p < 2¢ with
1=|y*(uo)| = l|luoll and |lxo — woll <€ & || T*(:) —y*[| <p Vt € U.
@ Uryshon's lemma that applied to an arbitrary tg € U produces a function
fe A(]D)) satisfying
f(to) = ||flle =1, f(D) C [0,1] and supp(f) C U.

plicitly defined by
TE(E) = F(£)-y*(x) + (1— F(£))- T)(e) x € X, t € D,

U
itability of U is used to prove that || T — T|| < 2e.
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An idea of the proof for A = A(D)
Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let T: X — A(D) be an Asplund operator with || T||=1. Suppose that 0 < € < v/2 and xg € Sx are such that

2 ~
[ Txoll > 1— 5. Then there exist ug € Sx and an Asplund operator T € S

L(X.A(ID))) satisfying that

[Tuoll=1.llx0—uoll <& and |T-T]<2e.

@ Topological tools gives an open set , UNT # 0, y* € Sx« & p < 2¢ with
1=|y*(uo)| = ||luoll and |lxo — woll < €& || T*(:) —y*[| <p Vt € U.

@ Uryshon’s lemma that applied to an arbitrary to € UNT produces a
function f € A(]D)) satisfying

f(to) =||flle =1, f(D) C Rer and f small in D\ U.
© T is explicitly defined by

TO() = F(£) -y (x) + (1 =€) (1~ £(£)) - T(x)(t)
© The suitability of U is used to prove that | T — T < 2e.
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An idea of the proof for A = A(D)
Theorem (A. J. Guirao, V. Kadets and B. C. 2012)

Let T: X — A(D) be an Asplund operator with || T||=1. Suppose that 0 < & < /2 and xg € Sx are such that
satisfying that

2 =
[ Txoll > 1— % . Then there exist ug € Sx and an Asplund operator T € SL(X.A(]D))

[Tuoll =10~ ol <& and ||T—T| <2

© Topological tools gives an open set , UNT # 0, y* € Sx+ & p < 2¢ with
1=|y*(uo)| = l|luoll and |lxo — woll <€ & || T*(¢) —y*[| <p Vt € U.
@ Uryshon's lemma that applied to an arbitrary tg € UNT produces a
function f € A(D) satisfying
f(to) = ||flle =1, f(D) C Rer and f small in D\ U.

explicitly defined by
-y TO)(E) = F(1) -y () + (1 =€) 1= (1)) T(x)(¢)

suitability of U is used to prove that || T — T || < 2e.
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Complex Urysohn type lemma:
a few pictures
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Complex Urysohn type lemma: a few pictures

Uryshon type lemma for A(DD)

UC D, 1eU,3f(1)=||f|e=1, F(D) C Re and  small in D\ U,
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Complex Urysohn type lemma: a few pictures

Uryshon type lemma for A(D)

UC D, 1eU,3f(1)=||f|e=1, f(D) C Re and f small in D\ U,

/DI1/2,1/21)

Es
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Complex Urysohn type lemma: a few pictures

Uryshon type lemma for A(DD)

U°C D, 1€ U, 3If(1)=||f|o=1, f(D) C Re and f small in D\ U,

_>z+5
1+0

DIz /20 oz

#5(Es)
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Complex Urysohn type lemma: a few pictures

Uryshon type lemma for A(]DD)

U°C D,1€ U, 3f(1)=||f|l =1, f(D) C R and f small in D\ U,

z—1—v1—-=z

S owzya pI/21/2)

$5(Es) h(45(Ey)) |
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Complex Urysohn type lemma: a few pictures

Uryshon type lemma for A(]D))

open

U CD1eU,3f(1)=|fll«=1,f(D)C Re and f small in D\ U,

Riemann conformal mapping

/DIL/2: /2]

h(@5(E;)
A /

Our Uryshon type lemma is suited for calculations with a computer. |
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Complex Urysohn type lemma: a few pictures

can we use the computer? Because of the provided proofs.

fn(z) == (232@1)"

dny,np,... 0k

PTTTN
/P12 1721

o fn1+fn2k+»~-+fn2

Proof. Letus fix 0 < < min{§/6,1/2} andn € N, n > % Let us define U; :=
U. We shall construct inductively a collection of points {tj};":], a decreasing
finite sequence {U; ;‘;rll of open subsets of U, t; € Uj1 N Ty, and functions
{fj}j=1 C A, satisfying forany j € {1,...,n} the following conditions:

@) f5(t;) = 1.

(i) |f;(t)| < 4 fort € K\ U;.

(i) [f5(t) — 1] < % for t € Ujy1.
Indeed, Lemma 2.1 allows us to find a norm one function f; € Aandat; € U3Nly
such that f; (1) = 1 and |fy(¢)| < 4 for ¢t € K \ Uy... THE PROOF GOES ON
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1+4+1 applications
Applications

14+4+1 applications

@ (1) The one already presented for the BPBp by Guirao-Kadets-Cascales;

@ In the unfinished paper

o (2) Daugavet prop.;
SOME GEOMETRIC PROPERTIES ON DISK ALGEBRAS .
o (3) Lusheness;
YUN SUNG CHOL DOMINGO GARCEA, SUN KWANG: KIM AND MANUEL MAESTRE o (4) Numerical radius;

o (5) AHSP.
@ (6) in the Ph. dissertation by O. Kozhushkina for BPBp for (K, Y)
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1+4+1 applications

Applications

Thank you |
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