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Notation

X topological space; E Banach;

2E subsets; wk(E ) weakly compact sets; cwk(E ) convex
weakly compact sets;

(Ω,Σ,µ) complete probability space;

Σ+ measurable sets of positive measure; for A ∈ Σ, Σ+
A

measurable subsets of A of positive measure;

measurability and scalar measurability for f : Ω→ E standard;
measurability for F : Ω→ 2E will be defined;
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Stay focused: kind of problems studied

Block 1 if F : Ω→ 2E is nice to find nice selectors f : Ω→ E of F .
Application: integration of multi-functions.

Block 2 if Y ⊂ E proximinal to find nice selectors of the metric
projection

E 3 x 7→ PY (x) := {y ∈ Y : ‖x−y‖= d(x ,Y )} 6= /0

Application: proximinality of L1(µ,Y )⊂ L1(µ,E).

Block 3 to use ideas as above but in topology to measure distances to
spaces of Baire one functions.
Application: quantitative versions of compactness results in
spaces of Baire one functions.

Block 4 to use ideas as above but in spaces of continuous functions.
Application: weak compactness in Banach spaces can be
rewritten using inequalities the true compactness result is
Tijonov theorem.
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Naive approach to find measurable selectors

1 start with a nice characterization of measurability for
f : Ω→ E ;

2 GUESS!!! what would be the natural extension (P) of the
above for multi-functions F : Ω→ 2E ;

3 Try to prove that (P) REALLY gives us measurable
selectors;

How good is this approach?

As good as the real applications you can get!!!
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Starting point. . . an elementary result

Exercise

f : Ω→ R. TFAE:

1 f is (µ-)measurable;

2 For every ε > 0 A ∈ Σ+ there is B ∈ Σ+
A such that

| · |−diam f (B) < ε.



Measurable selectors Scalarly measurable selectors Proximinality, topology Distances to spaces of functions

Starting point. . . an elementary result

Exercise

f : Ω→ E . TFAE:

1 f is (µ-)measurable;

2 For every ε > 0 A ∈ Σ+ there is B ∈ Σ+
A such that

‖ ‖−diam f (B) < ε.



Measurable selectors Scalarly measurable selectors Proximinality, topology Distances to spaces of functions

A naive approach. . .

f : Ω→ E

For every ε > 0 A ∈ Σ+ there is B ∈ Σ+
A such that

‖ ‖−diam f (B) < ε.

Is there a reasonable extension of the above for multi-functions?

Definition

F : Ω→ 2E satisfies
property (P) if for each ε > 0
and each A ∈Σ+ there exist
B ∈Σ+

A and D ⊂ E with
diam(D) < ε such that

F (t)∩D 6= /0 for every t ∈ B.

(P) is the measure theory counterpart of σ -fragmentable
multi-functions introduced by Jayne-Pallarés-Orihuela and Vera
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Multi-functions

Property (P)

F : Ω→ 2E satisfies property (P) if for each ε > 0 and each A ∈Σ+ there exist B ∈Σ+
A and D ⊂ E with

diam(D) < ε such that F (t)∩D 6= /0 for every t ∈ B.

1 Fix n = 0;

23 apply (P) for A = Ω, ε and F ;

4 a maximality argument produces a partition of B ′s;

5 enumerate B ′s as {Bn} and choose any xn ∈Dn ;

6 define fε := ∑n χBn xn ;

7 fε is µ-measurable and d(fε (t),F (t)) < ε µ-a.e.;

8 define Fε (t) := F (t)∩B(fε (t),ε);

9 IF Fε satisfies (P) GOTO 11;

10 STOP;

11 n := n + 1;

12 GOTO 2.

Conclusion

We produce a sequence (fn) : Ω→ E of µ-measurable functions such that
(fn(t)) is Cauchy µ-a.e., hence it is convergent.
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Multi-functions: measurable selections

Corollary, Kuratowski-Ryll Nardzewski, 1965

Let F : Ω→ 2E be a multi-function with closed non empty values of E . If E is
separable and F satisfies that

{t ∈Ω : F (t)∩O 6= /0} ∈Σ for each open set O ⊂ X . (E)

Then F admits a µ-measurable selector f .

Very little is known in the non separable case

Theorem

For a multi-function F : Ω→ wk(E) TFAE:

(i) F admits a strongly measurable selector.

(ii) There exist a set of measure zero Ω0 ∈Σ, a separable subspace Y ⊂ X
and a multi-function G : Ω\Ω0→ wk(Y ) that is Effros measurable and
such that G(t)⊂ F (t) for every t ∈Ω\Ω0;

(iii) F satisfies property (P).
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{t ∈Ω : F (t)∩O 6= /0} ∈Σ for each open set O ⊂ X . (E)

Then F admits a µ-measurable selector f .

Very little is known in the non separable case

Theorem

For a multi-function F : Ω→ wk(E) TFAE:

(i) F admits a strongly measurable selector.

(ii) There exist a set of measure zero Ω0 ∈Σ, a separable subspace Y ⊂ X
and a multi-function G : Ω\Ω0→ wk(Y ) that is Effros measurable and
such that G(t)⊂ F (t) for every t ∈Ω\Ω0;

(iii) F satisfies property (P).
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Our interest in selections: the integral of a multifunction

F : Ω−→ cwk(E) –convex w -compact

g

G

t0 1

?

6

There are several possibilities to define the integral
of F :

1 to take a reasonable embedding j from
cwk(E) into the Banach space Y (= `∞(BE ∗))
and then study the integrability of j ◦F ;

2 to take all integrable selectors f of F and
consider∫

F dµ =

{∫
f dµ : f integra. sel.F

}
.

1 Debreu, [Deb67], used the embedding technique together with Bochner
integration for multi-function with values in ck(E) – convex compact
subsets of E ;

2 Aumann, [Aum65], used the selectors technique;

3 They used the above definitions in some models in economy: Debreu
Nobel prize in 1983; Aumann Nobel prize in 2005

4 Pettis integration for multi-functions was developed in the separable case.

The non-separable case

1 Pettis integration theory was stuck in the separable case for the lack of a
selection result in the general case.



Measurable selectors Scalarly measurable selectors Proximinality, topology Distances to spaces of functions

Our interest in selections: the integral of a multifunction

F : Ω−→ cwk(E) –convex w -compact

g

G

t0 1

?

6
f

There are several possibilities to define the integral
of F :

1 to take a reasonable embedding j from
cwk(E) into the Banach space Y (= `∞(BE ∗))
and then study the integrability of j ◦F ;

2 to take all integrable selectors f of F and
consider∫

F dµ =

{∫
f dµ : f integra. sel.F

}
.

1 Debreu, [Deb67], used the embedding technique together with Bochner
integration for multi-function with values in ck(E) – convex compact
subsets of E ;

2 Aumann, [Aum65], used the selectors technique;

3 They used the above definitions in some models in economy: Debreu
Nobel prize in 1983; Aumann Nobel prize in 2005

4 Pettis integration for multi-functions was developed in the separable case.

The non-separable case

1 Pettis integration theory was stuck in the separable case for the lack of a
selection result in the general case.



Measurable selectors Scalarly measurable selectors Proximinality, topology Distances to spaces of functions

Our interest in selections: the integral of a multifunction

F : Ω−→ cwk(E) –convex w -compact

g

G

t0 1

?

6
f

There are several possibilities to define the integral
of F :

1 to take a reasonable embedding j from
cwk(E) into the Banach space Y (= `∞(BE ∗))
and then study the integrability of j ◦F ;

2 to take all integrable selectors f of F and
consider∫

F dµ =

{∫
f dµ : f integra. sel.F

}
.

1 Debreu, [Deb67], used the embedding technique together with Bochner
integration for multi-function with values in ck(E) – convex compact
subsets of E ;

2 Aumann, [Aum65], used the selectors technique;

3 They used the above definitions in some models in economy: Debreu
Nobel prize in 1983; Aumann Nobel prize in 2005

4 Pettis integration for multi-functions was developed in the separable case.

The non-separable case

1 Pettis integration theory was stuck in the separable case for the lack of a
selection result in the general case.



Measurable selectors Scalarly measurable selectors Proximinality, topology Distances to spaces of functions

Our interest in selections: the integral of a multifunction

F : Ω−→ cwk(E) –convex w -compact

g

G

t0 1

?

6
f

There are several possibilities to define the integral
of F :

1 to take a reasonable embedding j from
cwk(E) into the Banach space Y (= `∞(BE ∗))
and then study the integrability of j ◦F ;

2 to take all integrable selectors f of F and
consider∫

F dµ =

{∫
f dµ : f integra. sel.F

}
.

1 Debreu, [Deb67], used the embedding technique together with Bochner
integration for multi-function with values in ck(E) – convex compact
subsets of E ;

2 Aumann, [Aum65], used the selectors technique;

3 They used the above definitions in some models in economy: Debreu
Nobel prize in 1983; Aumann Nobel prize in 2005

4 Pettis integration for multi-functions was developed in the separable case.

The non-separable case

1 Pettis integration theory was stuck in the separable case for the lack of a
selection result in the general case.



Measurable selectors Scalarly measurable selectors Proximinality, topology Distances to spaces of functions

Our interest in selections: the integral of a multifunction

F : Ω−→ cwk(E) –convex w -compact

g

G

t0 1

?

6
f

There are several possibilities to define the integral
of F :

1 to take a reasonable embedding j from
cwk(E) into the Banach space Y (= `∞(BE ∗))
and then study the integrability of j ◦F ;

2 to take all integrable selectors f of F and
consider∫

F dµ =

{∫
f dµ : f integra. sel.F

}
.

1 Debreu, [Deb67], used the embedding technique together with Bochner
integration for multi-function with values in ck(E) – convex compact
subsets of E ;

2 Aumann, [Aum65], used the selectors technique;

3 They used the above definitions in some models in economy: Debreu
Nobel prize in 1983; Aumann Nobel prize in 2005

4 Pettis integration for multi-functions was developed in the separable case.

The non-separable case

1 Pettis integration theory was stuck in the separable case for the lack of a
selection result in the general case.



Measurable selectors Scalarly measurable selectors Proximinality, topology Distances to spaces of functions

Our interest in selections: the integral of a multifunction

F : Ω−→ cwk(E) –convex w -compact

g

G

t0 1

?

6
f

There are several possibilities to define the integral
of F :

1 to take a reasonable embedding j from
cwk(E) into the Banach space Y (= `∞(BE ∗))
and then study the integrability of j ◦F ;

2 to take all integrable selectors f of F and
consider∫

F dµ =

{∫
f dµ : f integra. sel.F

}
.

1 Debreu, [Deb67], used the embedding technique together with Bochner
integration for multi-function with values in ck(E) – convex compact
subsets of E ;

2 Aumann, [Aum65], used the selectors technique;

3 They used the above definitions in some models in economy: Debreu
Nobel prize in 1983; Aumann Nobel prize in 2005

4 Pettis integration for multi-functions was developed in the separable case.

The non-separable case

1 Pettis integration theory was stuck in the separable case for the lack of a
selection result in the general case.



Measurable selectors Scalarly measurable selectors Proximinality, topology Distances to spaces of functions

Our interest in selections: the integral of a multifunction

F : Ω−→ cwk(E) –convex w -compact

g

G

t0 1

?

6
f

There are several possibilities to define the integral
of F :

1 to take a reasonable embedding j from
cwk(E) into the Banach space Y (= `∞(BE ∗))
and then study the integrability of j ◦F ;

2 to take all integrable selectors f of F and
consider∫

F dµ =

{∫
f dµ : f integra. sel.F

}
.

1 Debreu, [Deb67], used the embedding technique together with Bochner
integration for multi-function with values in ck(E) – convex compact
subsets of E ;

2 Aumann, [Aum65], used the selectors technique;

3 They used the above definitions in some models in economy: Debreu
Nobel prize in 1983; Aumann Nobel prize in 2005

4 Pettis integration for multi-functions was developed in the separable case.

The non-separable case

1 Pettis integration theory was stuck in the separable case for the lack of a
selection result in the general case.



Measurable selectors Scalarly measurable selectors Proximinality, topology Distances to spaces of functions

SCALARLY MEASURABLE
SELECTORS
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cwk(E ) embeds into Y (= `∞(BE ∗))

Definition

For C ⊂ E bounded and x∗ ∈ E ∗, we write

δ
∗(x∗,C) := sup{x∗(x) : x ∈ C}.

Theorem, Rådström embedding [Råd52]

The map j : cwk(E)−→ `∞(BE ∗) given by por j(C)(x∗) = δ ∗(x∗,C) satisfies
the following properties:

(i) j(C + D) = j(C) + j(D) for each C ,D ∈ cwk(E);

(ii) j(λC) = λ j(C) for each λ ≥ 0 and C ∈ cwk(E);

(iii) h(C ,D) = ‖j(C)− j(D)‖∞ for each C ,D ∈ cwk(E);

(iv) j(cwk(E)) is closed in `∞(BE ∗).
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Scalar measurability and Pettis integrability

Definition

F : Ω−→ cwk(E ) is said to be scalarly measurable if

δ
∗(x∗,F ) : t 7→ δ

∗(x∗,F (t)).

is measurable for each x∗ ∈ E ∗.

Definition (Amri, Hess, Ziat)

Let E be Banach space. A multi-function F : Ω→ cwk(E ) is said
to be Pettis integrable if

δ ∗(x∗,F ) is integrable for each x∗ ∈ E ∗;

for each A ∈ Σ, there is
∫
A F dµ ∈ cwk(E ) such that

δ
∗
(
x∗,
∫
A

F dµ

)
=
∫
A

δ
∗(x∗,F ) dµ for every x∗ ∈ E ∗.
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Multi-functions: scalarly measurable selections

Theorem

Let F : Ω→ wk(E ) be a scalarly measurable multi-function. Then
F admits a scalarly measurable selector.
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Theorem
Let F : Ω→ wk(E) be a scalarly measurable multi-function. Then F admits a scalarly measurable selector.

Idea of the proof: if F0 is any scalarly measurable multi-function define by
t 7→ δ∗(x∗,F0)(t) := inf x∗(F0(t)).

1 Note that if ∆F0 := supx∗∈SE∗
∫

Ω

(
δ ∗(x∗,F0)−δ∗(x∗,F0)

)
dµ = 0 implies

any selector f of F0 is scalarly measurable because for every x∗ ∈ E ∗

δ
∗(x∗,F0) = x∗ ◦ f = δ∗(x∗,F0) µ−a.e.

.

2 PROVE THAT: For every ε > 0 there exists a scalarly measurable
multi-function G : Ω→ wk(E) such that

G(t)⊂ F (t) for all t ∈Ω and ∆G ≤ ε

(Uses: existence of w − limn∈U xn in weakly compact sets;
MARTINGALES; RNP of cwk(E)).

3 Use (2) repeatedly ε = 1/n and produce a sequence

· · · ⊂ Fn+1(t)⊂ Fn(t)⊂ . . .F1(t)⊂ F (t)

of scalarly measurable multifunctions with ∆Fn ≤ 1/n.

4 F0 : Ω→ wk(E) given by F0(t) :=
⋂

n∈N Fn(t) is scalarly measurable and
∆F0 = 0. Then (1) applies.
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Two consequences

Theorem

F : Ω→ cwk(E ) scalarly measurable. Then there is a collection
{fα}α<dens(E ∗,w∗) of scalarly meas. selectors of F such that

F (t) = {fα (t) : α < dens(E ∗,w∗)} for every t ∈ Ω.

Theorem

If F : Ω→ cwk(E ) a Pettis integrable multi-function, then:

every scalarly measurable selector is Pettis integrable;

F admits a scalarly measurable selector.

Furthermore, F admits a collection {fα}α<dens(E ∗,w∗) of Pettis
integrable selectors such that

F (t) = {fα (t) : α < dens(E ∗,w∗)} for every t ∈ Ω.

Moreover,
∫
A F dµ = ISF (A) for every A ∈ Σ.



Measurable selectors Scalarly measurable selectors Proximinality, topology Distances to spaces of functions

Two consequences

Theorem

F : Ω→ cwk(E ) scalarly measurable. Then there is a collection
{fα}α<dens(E ∗,w∗) of scalarly meas. selectors of F such that

F (t) = {fα (t) : α < dens(E ∗,w∗)} for every t ∈ Ω.

Theorem

If F : Ω→ cwk(E ) a Pettis integrable multi-function, then:

every scalarly measurable selector is Pettis integrable;

F admits a scalarly measurable selector.

Furthermore, F admits a collection {fα}α<dens(E ∗,w∗) of Pettis
integrable selectors such that

F (t) = {fα (t) : α < dens(E ∗,w∗)} for every t ∈ Ω.

Moreover,
∫
A F dµ = ISF (A) for every A ∈ Σ.



Measurable selectors Scalarly measurable selectors Proximinality, topology Distances to spaces of functions

PROXIMINALITY,
TOPOLOGY
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The problem

If Y ⊂ E is proximinal, is L1(µ,Y ) proximinal in L1(µ,E )?

1 Khaly 1983, YES, Y reflexive;

2 Zha-Yong 1994, YES, Y
general;

3 Mendoza 1998, NO in general
but YES when Y is separable;

4 Question: What happen when
Y is WCG?

Answer:

1 Z is separable; µ(Ω0) = 0;
2 if Y is WCD (Lindelöf Σ) we can change Y by Y0 ⊂ Y

separable - descriptive set-theory;
3 PY : Z → 2Y0 is Effros measurable;
4 take g : Z → Y0 measurable selector for PY ;
5 then g ◦ f ∈ L1(µ,Y ) is best approximation of f .
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2Y
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separable - descriptive set-theory;

3 PY : Z → 2Y0 is Effros measurable;
4 take g : Z → Y0 measurable selector for PY ;
5 then g ◦ f ∈ L1(µ,Y ) is best approximation of f .
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The problem

If Y ⊂ E is proximinal, is L1(µ,Y ) proximinal in L1(µ,E )?

f : Ω −→ E
↑ ↑

Ω\Ω0
f−→ Z

↓ PY

2Y

1 Khaly 1983, YES, Y reflexive;

2 Zha-Yong 1994, YES, Y
general;

3 Mendoza 1998, NO in general
but YES when Y is separable;

4 Question: What happen when
Y is WCG?

Answer: YES
1 Z is separable; µ(Ω0) = 0;
2 if Y is WCD (Lindelöf Σ) we can change Y by Y0 ⊂ Y

separable - descriptive set-theory;
3 PY : Z → 2Y0 is Effros measurable;
4 take g : Z → Y0 measurable selector for PY ;
5 then g ◦ f ∈ L1(µ,Y ) is best approximation of f .
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A topological version of the proximinal result

Theorem

Let Y be a topological space, Z Polish and F : Y ×Z → R a map
satisfying:

H1. F z is upper semi-continuous for every z ∈ Z ;

H2. Fy is lower semi-continuous for every y ∈ Y ;

H3. For every y ∈ Y there is z ∈ Z such that
F (y ,z) = infw∈Z F (y ,w).

Then there is a Čech-analytic measurable map h : Y → Z such that

F (y ,h(y)) = inf
z∈Z

F (y ,z)

for every y ∈ Y .
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Baire one functions

f : Ω→ E

For every ε > 0 A ∈ Σ+ there is B ∈ Σ+
A such that

‖ ‖−diam f (B) < ε.

What is the topological counterpart of the above?

Definition

f : X → E is
ε-fragmented if for every
non empty subset S ⊂ X
there exist an open
subset U ⊂ X such that
U ∩S 6= /0 and

‖ ‖−diam(f (U ∩S))≤ ε.
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Baire one functions

f : Ω→ E

For every ε > 0 A ∈ Σ+ there is B ∈ Σ+
A such that

‖ ‖−diam f (B) < ε.

What is the topological counterpart of the above?

�
d−diam(S ∩ U) ≤ ε

S

U

‖ ‖−diam(f (U ∩S))≤ ε

Definition

f : X → E is
ε-fragmented if for every
non empty subset S ⊂ X
there exist an open
subset U ⊂ X such that
U ∩S 6= /0 and

‖ ‖−diam(f (U ∩S))≤ ε.
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Distances to Baire one functions

Definition

For f ∈ EX we define:

frag(f ) := inf{ε > 0 : f is ε-fragmented}

Theorem

If X is a complete metric space, E a Banach space and f ∈ EX then

1

2
frag(f )≤ d(f ,B1(X ,E))≤ frag(f ).

In the particular case E = R we precisely have

d(f ,B1(X )) =
1

2
frag(f ).
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Distances to Baire one functions

Theorem
If X is a complete metric space, d(f ,B1(X )) = 1

2 frag(f )

1 1
2 frag(f )≤ d(f ,B1(X )) easy;

2 we prove d(f ,B1(X ))≤ 1
2 frag(f ) for X Polish;

3 assume the quantities above are finite; fix ε > frag(f )

4 use ε-fragmentability;

5 REPEAT 4 produce a sequence of open sets {Un}n with:

X = ∪nUn ;
Bn := Un \∪n

k=1Uk 6= /0;
diam(f (Bn) < ε.

6 pick xn the middle point of cof (Bn) and define
fε := ∑n χBn xn ;

7 |fε (t)− f (t)|< 1
2 ε for every t ∈ X ;

8 use that Bn are disjoint Fσ sets and Tietze theorem to
conclude fε ∈ B1(X );

9 3, 7 and 8 imply that d(f ,B1(X )≤ 1
2 frag(f ).

For complete metric space X is much more involved: there is no countability
helping; in fact our results are far more general.
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Application: Quantitative Rosenthal’s result

C(X) or B1(X)

RX

H

H
τp

d̂

-�

Hc

-�

d̂

d̂= d̂

Let X be a Polish space, H ⊂ RX pointwise
bounded and

d̂ := sup
(hn)n⊂H

d(
⋂

m∈N
{hn : n > m}R

X

,B1(X )).

d̂ := d̂(H
RX

,B1(X ))

Quantitative Rosenthal’s result

d̂ = d̂.
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Application: quantitative angelicity

C(X) or B1(X)

RX

H

H
τp

d̂

-�

Hc

-�

d̂

d̂= d̂

Let X be a Lindelöf Σ-space, H ⊂ RX pointwise
bounded and

d̂ := sup
(hn)n⊂H

d(
⋂

m∈N
{hn : n > m}R

X

,C (X )).

d̂ := d̂(H
RX

,C (X ))

Quantitative angelicity

d̂≤ d̂≤ 5d̂
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And...?

everything that I know about compactness in function spaces;

everything that I know about weak compactness in (B) spaces;

everything that I know about separately continuous functions

etc.

can be expressed as an inequality

WELL... a.e.

THANK YOU!
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