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Bourgain property & compactness Bourgain property & Birkhoff integrability Aumman&Debreu&Pettis integrals multifunctions

The boundary problem

Throughout the lecture. . .

X is a Banach space equipped with its norm ‖ ‖;
K is a Hausdorff compact and C(K) is equipped with its supremum norm.

A subset B ⊂ BX ∗= {x∗ ∈ X ∗ ; ‖ x∗ ‖≤ 1} is a boundary for
BX ∗ if for any x ∈ X , there is x∗ ∈ B such that x∗(x) =‖ x ‖ .

A simple example of boundary is provided by Ext (BX ∗) the
set of extreme points of BX ∗ .

e1e2
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The boundary problem

The boundary problem (Godefroy)...extremal test for compactness

Let X Banach space, B ⊂ BX ∗ boundary and denote by τp(B) the
topology defined on X by the pointwise convergence on B. Let H
be a norm bounded and τp(B)-compact subset of X .

Is H weakly compact?

Pioneer positive known results:

1 1952, Grothendieck: X = C (K ) y B = Ext(BC(K)∗);
2 1963, Rainwater: B = Ext(BX ∗), H τp(B)-seq.compact;
3 1972, James: BX ⊂ BX ∗∗ boundary, characterization of

reflexivity;
4 1972, Simons: H τp(B)-seq.compact and B any boundary;
5 1974, de Wilde: H convex and B any boundary;
6 1982, Bourgain-Talagrand: B = Ext(BX ∗), arbitrary H.
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Boundary problem for C (K )

G. Godefroy and B. C., 1998

Let K be a compact space and B ⊂ BC(K)∗ a boundary. Then a
subset H of C (K ) is weakly compact if, and only if, it is norm
bounded and τp(B)-compact.

How can you prove something like that?

Lemma

Let K be a compact space and B ⊂ BC(K)∗ a boundary. Given a
sequence (fn) in C (K ) and x ∈ K , then there is µ ∈ B such that

fn(x) =
∫
K

fndµ for every n ∈ N.
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Boundary problem for C (K )

Lemma
Let K be a compact space and B ⊂ BC(K)∗ a boundary. Given a sequence (fn) in C(K) and x ∈K , then there is

µ ∈ B such that fn(x) =
∫
K fndµ for every n ∈ N.

Proof.-

X g(t) := 1−∑
∞
n=1

1
2n

|fn(t)−fn(x)|
1+|fn(t)−fn(x)| , t ∈ K , 0≤ g ≤ 1.

X Then F =
⋂

∞
n=1{y ∈ K ; fn(y) = fn(x)}= {y ∈ K : g(y) = 1 = ‖g‖∞}.

X ∃ µ ∈ B such that 1 =
∫
K gdµ ≤

∫
K gd |µ| ≤ |µ|(K)≤ ‖µ‖= 1.

X In different words,

0 = |µ|(K)−
∫
K

gd |µ|=
∫
K

(1−g)d |µ|.

X Since 1−g ≥ 0 we obtain 0 = |µ|({y ∈ K : 1−g(y) > 0}) = |µ|(K \F )

X Then for every n ∈ N,∫
K

fndµ =
∫
F

fndµ =
∫
F

fn(x)dµ = fn(x)

because µ is a probability itself.
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The boundary problem for general Banach spaces X

Key point...de Wilde’s result

Let X be a Banach space and B a boundary for BX ∗ . If H ⊂ X is convex and
τp(B)-compact then H is weakly compact.

if I want to solve

Boundary problem

Let X be a Banach space and B a boundary for BX ∗ . If H ⊂ X is norm
bounded and τp(B)-compact then H is weakly compact.

I wish I had a tool...

...Krein-Smulyan type result

Let X be a Banach space and B a boundary for BX ∗ . If H ⊂ X is norm

bounded and τp(B)-compact, then co(H)
τp(B)

is τp(B)-compact.

X Bad news: τp(B) is not compatible with 〈X ,X ∗〉.
X Good news: we can overcome the difficulties for many Banach spaces.
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Krein-Smulyan type result

Wish. . .

Take X Banach space and B ⊂ BX ∗ 1-norming (i.e. ‖x‖= sup{x∗(x) : x∗ ∈ B}). For
every norm bounded τp(B)-compact subset H of X its τp(B)-closed convex

hull co(H)
τp(B)

is τp(B)-compact.

Proof.- Fix µ a Radon probability on (H,τp(B)), find a barycenter for µ?

find xµ ∈ X with x∗(xµ ) =
∫
H

x∗|Hdµ, for every x∗ ∈ X ∗?

X Difficulty: x∗|H is measurable only for x∗ ∈ B;

X since τp(B) = τp(co(B)), we can assume B convex;

X if B is convex and 1-norming then Hahn-Banach implies B
w ∗

= BX ∗ .

X B|H := {x∗|H : x∗ ∈ B} ⊂ C(H,τp(B))

and BX ∗ |H = B|H
τp(H)

;

X if B|H does not have independent sequences (Rosenthal) then B|H
τp(H)

is
made up of µ-measurable functions for each µ;

X indeed, B|H as above has Bourgain property with respect to µ.

(b∗n)n in B is independent on H if there are s < t such that(⋂
n∈P

{w ∈ H : b∗n(w) < s}

)
∩

( ⋂
n∈Q

{w ∈ H : b∗n(w) > t}

)

for every disjoint finite sets P,Q ⊂ N.
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Bourgain property. . . a bit of history

Definition

We say that a family F ⊂ RΩ has Bourgain
property if for every ε > 0 and every A ∈Σ
with µ(A) > 0 there are B1, . . . ,Bn ⊂ A, Bi ∈Σ,
with µ(Bi ) > 0 such that for every f ∈F

inf
1≤i≤n

| · |diam(f (Bi )) < ε.

The property of Bourgain

The notion wasn’t published by Bourgain.

It appears in a paper by [RS85] and refers
to handwritten notes by Bourgain.



Bourgain property & compactness Bourgain property & Birkhoff integrability Aumman&Debreu&Pettis integrals multifunctions

Bourgain property. . . a bit of history

Definition

We say that a family F ⊂ RΩ has Bourgain
property if for every ε > 0 and every A ∈Σ
with µ(A) > 0 there are B1, . . . ,Bn ⊂ A, Bi ∈Σ,
with µ(Bi ) > 0 such that for every f ∈F

inf
1≤i≤n

| · |diam(f (Bi )) < ε.

The property of Bourgain

The notion wasn’t published by Bourgain.

It appears in a paper by [RS85] and refers
to handwritten notes by Bourgain.



Bourgain property & compactness Bourgain property & Birkhoff integrability Aumman&Debreu&Pettis integrals multifunctions

Bourgain property. . . a bit of history

Definition

We say that a family F ⊂ RΩ has Bourgain
property if for every ε > 0 and every A ∈Σ
with µ(A) > 0 there are B1, . . . ,Bn ⊂ A, Bi ∈Σ,
with µ(Bi ) > 0 such that for every f ∈F

inf
1≤i≤n

| · |diam(f (Bi )) < ε.

The property of Bourgain

The notion wasn’t published by Bourgain.

It appears in a paper by [RS85] and refers
to handwritten notes by Bourgain.



Bourgain property & compactness Bourgain property & Birkhoff integrability Aumman&Debreu&Pettis integrals multifunctions

Remarkable facts about Bourgain property

Bourgain Property

We say that a family F ⊂ RΩ has Bourgain property if for every ε > 0 and every A ∈Σ with µ(A) > 0 there are
B1 , . . . ,Bn ⊂ A, Bi ∈Σ, with µ(Bi ) > 0 such that for every f ∈F

inf
1≤i≤n

| · |diam(f (Bi )) < ε.

Properties

If F = {f }, TFAE:

(i) (Bourgain property) For every ε > 0 and every A ∈Σ with µ(A) > 0
there is B ∈Σ, B ⊂ A with µ(B) > 0 and | · |diam f (B) < ε.

(ii) f is measurable.

If F has Bourgain property, then F is made up of measurable functions.

F has Bourgain property ⇒ F
τp(Ω)

has too.

F has Bourgain property and f ∈F
τp(Ω)

, then there is a sequence (fn) in
F that converges to f , µ-almost everywhere.
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. . . back to Krein-Smulyan type result

Wish. . .

Take X Banach space and B ⊂ BX ∗ 1-norming (i.e. ‖x‖= sup{x∗(x) : x∗ ∈ B}). For
every norm bounded τp(B)-relatively compact subset H of X its τp(B)-closed

convex hull co(H)
τp(B)

is τp(B)-compact.

X if B|H does not have independent sequences (Rosenthal), then B|H has
Bourgain property with respect to µ.

X BX ∗ |H = B|H
τp(H)

has Bourgain property;

X we can write Tµ (x∗) =
∫
H x∗|Hdµ and Tµ ∈ X ∗∗;

X given any A⊂ BX ∗ if x∗|H ∈ A|H
τp(H)

, then there is a sequence (x∗n |H) in
A|H that converges to x∗|H , µ-almost everywhere.

X then for each A⊂ BX ∗ , Tµ (A
w ∗

)⊂ Tµ (A);

X Grothendieck completeness⇒ Tµ = xµ ∈ X barycenter. . . goes on
smoothly.

X if B|H has an independent sequence on H ⇒ βN ⊂ (BX ∗ ,w∗).
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What we know about the boundary problem for X
Theorem: Manjabacas, Vera and B.C., 1997

Take X Banach space and B ⊂ BX ∗ norming (i.e. ‖x‖= sup{x∗(x) : x∗ ∈ B}). For
every norm bounded τp(B)-relatively compact subset H of X its τp(B)-closed

convex hull co(H)
τp(B)

is τp(B)-compact, assuming `1(c) 6⊂ X .

Corollary: Manjabacas, Vera and B.C., 1997

Let X be a Banach space such that `1(c) 6⊂ X and B any boundary for BX ∗ . If
H ⊂ X is norm bounded and τp(B)-compact then H is weakly compact.

Is the Theorem cheap?

A. S. Granero 2006

Take X Banach space. TFAE:

1 For every B ⊂ BX ∗ norming and every norm bounded τp(B)-rel. compact

subset H of X its τp(B)-closed convex hull co(H)
τp(B)

is τp(B)-compact;

2 `1(c) 6⊂ X .

Is the Corollary cheap?
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Bourgain property & Birkhoff integrability

1 Given H ⊂ X τp(B) compact and µ Radon probability we
have studied (Pettis) integrability of id : H ↪→ X using
Bourgain property of

Zid = {x∗ ◦ id : x∗ ∈ BX ∗} ⊂ RH .

2 In general if (Ω,Σ,µ) is a complete probability space and
f : Ω → X is bounded and such that

Zf = {x∗ ◦ f : x∗ ∈ BX ∗} ⊂ RΩ

has Bourgain property what can you say about f ?

Using techniques of Pettis integration the known answer is: f is
Pettis integrable

. . . but in this case the outcome is in fact better.
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Birkhoff definition

Let f : Ω −→ X be a function. If Γ is a partition of Ω into
countably many sets (An) of Σ, the function f is called summable
with respect to Γ if the restriction f |An is bounded whenever
µ(An) > 0 and the set of sums

J(f ,Γ) =
{

∑
n

f (tn)µ(An) : tn ∈ An

}
is made up of unconditionally convergent series.

The function f is said to be Birkhoff integrable if for every ε > 0
there is a countable partition Γ = (An) of Ω in Σ for which f is
summable and

‖ ‖−diam(J(f ,Γ)) < ε.

In this case, the Birkhoff integral (B)
∫
Ω f dµ of f is the only

point in the intersection⋂
{co(J(f ,Γ)) : f is summable with respect to Γ}.
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Birkhoff integrability: properties

Birkhoff integrability:

1 was introduced in [Bir35].

2 lies strictly between Bochner and Pettis integrability,
[Pet38, Phi40]

3 doesn’t involve a barycentric definition;

4 if X is separable Birkhoff=Pettis;

5 Birkhoff integrability has been historically ignored.

Our basic result

We characterize Birkhoff integrability via the property of Bourgain.
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Bourgain property and Birkhoff integrability

Theorem (Rodriguez-B.C., 2005)

Let f : Ω → X be a bounded function. TFAE:

(i) f is Birkhoff integrable;

(ii) Zf = {〈x∗, f 〉 : x∗ ∈ BX ∗} has Bourgain property.

Theorem (Rodriguez-B.C., 2005)

Let f : Ω −→ X be a function. TFAE:

(i) f is Birkhoff integrable;

(ii) Zf is uniformly integrable, Zf has Bourgain property.
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Applications to URL integrable functions

Theorem (Rodriguez-B.C., 2005)

Let f : Ω −→ X be a function. TFAE:

(i) f is Birkhoff integrable;

(ii) there is x ∈ X satisfying: for every ε > 0 there is a countable
partition Γ of Ω in Σ for which f is summable and

‖S(f ,Γ,T )−x‖< ε for every choice T in Γ;

(iii) there is y ∈ X satisfying: for every ε > 0 there is a countable
partition Γ of Ω in Σ such that f is summable with respect to
each countable partition Γ′ finer than Γ and

‖S(f ,Γ′,T ′)−y‖< ε for every choice T ′ in Γ′.

In this case, x = y =
∫
Ω f dµ.
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Musia l question?

Zbl 0974.28007
Kadets, V.M.; Tseytlin, L.M.
On “integration” of non-integrable vector-valued functions.
Mat. Fiz. Anal. Geom. 7, No.1, 49-65 (2000)

Let µ be the Lebesgue measure on [0,1] and X be a Banach space. A function f : [0,1]→ X is called absolutely
Riemann-Lebesgue integrable over a measurable set A⊂ [0,1] if there is x ∈ X such that for every ε > 0 there exists
a measurable partition 〈∆i 〉∞i=1 of A such that for every finer measurable partition 〈Γi 〉∞j=1 of A and arbitrary points

sj ∈ Γj one has ‖∑j f (sj )µ(Γj )−x‖< ε and ∑j f (sj )µ(Γj ) is absolutely convergent (〈Γi 〉∞j=1 is finer than 〈∆i 〉∞i=1 if

each ∆i is a union of some Γj ’s). In case of unconditional convergence one gets a definition of unconditionally
Riemann-Lebesgue integrable function. . .

There are no results placing ARL and URL integrals among other known types
of integrals such as Birkhoff’s integral or generalized McShane’s integral which
have similar definitions (and it is relatively easy to see that URL integrable
functions are also Birkhoff integrable).
The rest of the paper is devoted to the study. . .

Kazimierz Musia l (Wroc law)
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Applications to dual spaces with WRNP

Definition

1 X ∗ has the weak Radon-Nikodým property;

2 X does not contain a copy of `1;

3 for every complete probability space (Ω,Σ,µ) and for every
µ-continuous countably additive vector measure ν : Σ −→ X ∗

of σ -finite variation there is a Pettis integrable function
f : Ω −→ X ∗ such that

ν(E ) =
∫
E

f dµ

for every E ∈ Σ.
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Applications to dual spaces with WRNP

Theorem: Musia l,Ryll-Nardzewski, Janicka and Bourgain

Let X be a Banach space. TFAE:

1 X ∗ has the weak Radon-Nikodým property;

2 X does not contain a copy of `1;

3 for every complete probability space (Ω,Σ,µ) and for every
µ-continuous countably additive vector measure ν : Σ −→ X ∗

of σ -finite variation there is a Pettis integrable function
f : Ω −→ X ∗ such that

ν(E ) =
∫
E

f dµ

for every E ∈ Σ.
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Applications to dual spaces with WRNP

Rodriguez-B.C. 2005

Let X be a Banach space. TFAE:
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The integral for a multifunction

F : Ω −→ cwk(X )

g

G

t0 1

?

6

There are several standard ways of dealing with
integration for F :

1 take a reasonable embedding j from cwk(X )
into a Banach space Y (= `∞(BX ∗)) and deal
with the integrability of j ◦F ;

2 take all integrable selectors f of F and
consider∫

F dµ =

{∫
f dµ : f integra. sel.F

}
.

1 Debreu, [Deb67], used the embedding technique dealing with
Bochner integrability;

2 Aumann, [Aum65], used the selector technique;

3 We used the embedding technique with Birkhoff integrability:
Rodriguez-B.C., 2004.
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3 We used the embedding technique with Birkhoff integrability:
Rodriguez-B.C., 2004.
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X For X separable, we study the Pettis integral for
multi-functions F : Ω → cwk(X );

X From the notion of Pettis integrability for such an F studied
in the literature one readily infers that if we embed
j : cwk(X ) → `∞(BX ∗) then j ◦F is integrable with respect to
a norming subset of B`∞(BX∗ )∗ .

X A natural question arises: When is j ◦F Pettis integrable?

X Pettis integrability of any cwk(X )-valued function F is
equivalent to the Pettis integrability of j ◦F if and only if X
has the Schur property. . .

X . . . if and only if equivalent to the fact that cwk(X ) is
separable when endowed with the Hausdorff distance.
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. . . back to boundaries: Simons’ techniques

Theorem: Orihuela, Muñoz, B.C., to appear

Let J : X → 2BX∗ be the duality mapping

J(x) := {x∗ ∈ BX ∗ : x∗(x) = ‖x‖}.

TFAE:

(i) X is Asplund, i.e., X ∗ has RNP;

(ii) for some fixed 0 < ε < 1, J has an ε-selector f that sends
norm separable subsets of X into norm separable subsets of
X ∗;

(iii) for some fixed 0 < ε < 1, dual unit ball BX ∗ is norm
ε-fragmented.

ε-selector: d(f (x),J(x)) < ε for every x ∈ X
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Two. . . three nice problems

1 The boundary problem in full generality (Godefroy).

2 Characterize Banach spaces X for which (BX ∗ ,w∗) is
sequentially compact (Diestel).

3 Characterize Banach spaces X for which (BX ∗ ,w∗) is angelic.
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