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ABSTRACT. This paper deals with a strengthening of the Bishop-Phelps prop-
erty for operators that in the literature is called the Bishop-Phelps-Bollobás prop-
erty. Let X be a Banach space and L a locally compact Hausdorff space. We
prove that if T : X → C0(L) is an Asplund operator and ‖T (x0)‖ u ‖T‖
for some ‖x0‖ = 1, then there is a norm attaining Asplund operator S : X →
C0(L) and ‖u0‖ = 1 with ‖S(u0)‖ = ‖S‖ = ‖T‖ such that u0 u x0 and
S u T . As particular cases we obtain: (A) if T is weakly compact, then S can
also be taken being weakly compact; (B) if X is Asplund (for instance, X = c0),
the pair (X,C0(L)) has the Bishop-Phelps-Bollobás property for all L; (C) if L
is scattered, the pair (X,C0(L)) has the Bishop-Phelps-Bollobás property for
all Banach spaces X .

1. INTRODUCTION

In this paper we are concerned with the study of simultaneously approximating
both operators and the points at which they almost attain their norms by norm at-
taining operators and the points at which they attain their norms. Namely, we study
what in recent literature has been called the Bishop-Phelps-Bollobás property. Us-
ing standard notation that we fix at the end of this introduction, this property is
defined as:

Definition 1 (Acosta, Aron, Garcı́a and Maestre, [1]). A pair of Banach spaces
(X,Y ) is said to have the Bishop-Phelps-Bollobás property (BPBP) if for any
ε > 0 there are η(ε) > 0 and β(ε) > 0 with lim

t→0
β(t) = 0, such that for all

T ∈ SL(X,Y ), if x0 ∈ SX is such that ‖T (x0)‖ > 1−η(ε), then there are u0 ∈ SX
and S ∈ SL(X,Y ) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < β(ε) and ‖T − S‖ < ε.

The above BPBP was motivated by the following result of Bollobás:

Theorem 1.1 (Bollobás, [5]). Given 1
2 > ε > 0, if x0 ∈ SX and x∗ ∈ SX∗ are

such that

|1− x∗(x0)| <
ε2

2
,
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then there are u0 ∈ SX and y∗ ∈ SX∗ such that

y∗(u0) = 1, ‖x0 − u0‖ < ε+ ε2 and ‖x∗ − y∗‖ < ε.

Bollobás’ result is indeed an observation about the classical Bishop-Phelps’ the-
orem, [4], that in the words of its author “sharpen Bishop-Phelps’ theorem and is
applied to some problems about the numerical range of operators.” Using defi-
nition 1, Bollobás’ theorem 1.1 can be rephrased by saying that for every Banach
space X the pair (X,R) has BPBP.

In [1], the authors described a number of cases of pairs (X,Y ) with BPBP.
For instance, they proved that if Y has property (β), see [16, Definition 1.2], then
(X,Y ) has BPBP for every Banach space X . Also, (`1, Y ) has BPBP for Y in
a large class of Banach spaces that includes the finite dimensional Banach spaces,
uniformly convex Banach spaces, spaces L1(µ) for a σ-finite measure µ and spaces
C(K). Although some particular results can be found in [1, Section 5] for pairs of
the form (`∞n , Y ) (for instance, Y uniformly convex), the authors of [1] comment
that their methods do not work for pairs of the form (c0, Y ). Our aim here is to
devise a method to study the Bishop-Phelps-Bollobás property that in particular
addresses this question when Y = C0(L), L a locally compact Hausdorff space.

The following describes the contents of this paper. After fixing some standard
notation, we recall in section 2 the notions of Asplund space and Asplund operator.
In this section, we also prove a central technical result (lemma 2.3) that will be
used to prove our main result theorem 2.4. Theorem 2.4 establishes that if T :
X → C0(L) is an Asplund operator and ‖T (x0)‖ u ‖T‖ for some ‖x0‖ = 1, then
there is a norm attaining Asplund operator S : X → C0(L) and ‖u0‖ = 1 with
‖S(u0)‖ = ‖S‖ = ‖T‖ such that u0 u x0 and S u T .

Three consequences follow:
(A) If T is weakly compact, then S can also be taken being weakly compact (see

corollary 2.5).
(B) If X is Asplund, then the pair (X,C0(L)) has the BPBP for all L (see

corollary 2.6).
(C) If L is scattered, then the pair (X,C0(L)) has the BPBP for all X (see

corollary 2.7).
We note that in corollary 2.5 even the part of the density of norm attaining

weakly compact operators from X to C0(L) in the family of weakly compact op-
eratorsW(X,C0(L)) seems to be new. Corollary 2.6 strengthens a result in [10]
and corollary 2.7 can be alternatively proved using a result in [1].

Notation and terminology: All vector spaces in this paper are assumed to be real.
By X and Y we always denote Banach spaces. BX and SX are the closed unit ball
and the unit sphere of X , respectively. X∗ (resp. X∗∗) stands for the topological
dual (resp. bidual) of X . The weak topology is denoted w and w∗ is the weak∗

topology in the dual. L(X,Y ) denotes the spaces of bounded linear operators from
X to Y endowed with its usual norm.

The letters K and L are reserved to denote compact and locally compact Haus-
dorff spaces respectively. C(K) (resp. C0(L)) denotes the space of real val-
ued continuous functions (resp. continuous functions vanishing at infinity) on
K (resp. on L) endowed with the standard sup norm, that is simply denoted by
‖f‖ := sup{|f(s)| : s ∈ K}. As usual, given s ∈ Lwe denote by δs : C0(L)→ R
the Dirac measure at s given by δs(f) = f(s), f ∈ C0(L).
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2. ASPLUND SPACES AND BISHOP-PHELPS-BOLLOBÁS THEOREM

The Banach space X is called an Asplund space if, whenever f is a convex con-
tinuous function defined on an open convex subset U of X , the set of all points of
U where f is Fréchet differentiable is a dense Gδ-subset of U . This definition is
due to Asplund [3] under the name strong differentiability space. Asplund spaces
have been used profusely since they were introduced. The versatility of this con-
cept is in part explained by its multiple characterizations via topology or measure
theory, as for instance in the following:

Theorem 2.1. Let X be a Banach space. Then the following conditions are equiv-
alent:

(i) X is an Asplund space;
(ii) every w∗-compact subset of (X∗, w∗) is fragmented by the norm;

(iii) each separable subspace of X has separable dual;
(iv) X∗ has the Radon-Nikodým property.

For the notion of Radon-Nikodým property we refer to [6, 8]. The equivalence
(iii) ⇔ (iv) is due to Stegall [18], (i) ⇔ (ii) ⇒ (iii) can be found in the paper by
Namioka and Phelps [13] and, (iii)⇒ (ii) is due again to Stegall [19]. Recall that
a subset C of (X∗, w∗) is said to be fragmented by the norm if for each non-empty
subset A of C and for each ε > 0 there exists a non-empty w∗-open subset U of
X∗ such that U ∩ A 6= ∅ and ‖·‖-diam(U ∩ A) ≤ ε, [12]. We note that if C is
w∗-compact convex, then C is fragmented by the norm if, and only if, C has the
Radon-Nikodým property, see [6, Theorem 4.2.13].

An operator T ∈ L(X,Y ) is said to be an Asplund operator if it factors through
an Asplund space, i.e., there are a Banach space Z and operators T1 ∈ L(X,Z),
T2 ∈ L(Z, Y ) such that T = T2 ◦ T1, see [9, 20]. Note that every weakly compact
operator T ∈ W(X,Y ) factors through a reflexive Banach space, see [7], and
hence T is an Asplund operator.

Lemma 2.3 isolates the technicalities that we need to prove our main result,
theorem 2.4. In the proof of the lemma, we use that Theorem 1.1 easily yields the
following result.

Remark 2.2. Given 1
2 > ε > 0, if x0 ∈ SX and x∗ ∈ SX∗ are such that

|x∗(x0)| > 1− ε2

4
,

then there are u0 ∈ SX and y∗ ∈ SX∗ such that

|y∗(u0)| = 1, ‖x0 − u0‖ < ε and ‖x∗ − y∗‖ < ε.

Recall that a subset B ⊂ B∗Y is said to be 1-norming if

‖y‖ = sup
b∗∈B

|b∗(y)|,

for every y ∈ Y . Recall that if T ∈ L(X,Y ), then its adjoint T ∗ ∈ L(Y ∗, X∗) is
also w∗-to-w∗ continuous.

Lemma 2.3. Let T : X → Y be an Asplund operator with ‖T‖ = 1, let 1
2 > ε >

0 and choose x0 ∈ SX such that

‖T (x0)‖ > 1− ε2

4
.
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For any given 1-norming set B ⊂ BY ∗ if we write M := T ∗(B) then there are:
(a) a w∗-open set U ⊂ X∗ with U ∩M 6= ∅ and
(b) points y∗ ∈ SX∗ and u0 ∈ SX with |y∗(u0)| = 1 such that

‖x0 − u0‖ < ε and ‖z∗ − y∗‖ < 3ε for every z∗ ∈ U ∩M.

Proof. Observe first that if T is an Asplund operator, then its adjoint T ∗ sends the
unit ball of Y ∗ into a w∗-compact subset of (X∗, w∗) that is norm fragmented.
Indeed, if T = T2 ◦ T1 is a factorization through the Asplund space Z for T , then
its adjoint T ∗ factors through Z∗

Y ∗
T ∗

//

T ∗
2 !!CC

CC
CC

CC
C X∗

Z∗
T ∗
1

=={{{{{{{{{

Since T ∗2 is w∗-w∗ continuous, T ∗2 (BY ∗) is a w∗-compact subset of Z∗, and
we can now appeal to Theorem 2.1 to conclude that T ∗2 (BY ∗) ⊂ (Z∗, w∗) is
fragmented by the norm of Z∗. On the other hand, T ∗1 : Z∗ → X∗ is norm-to-
norm and w∗-w∗ continuous and, therefore it sends the fragmented w∗-compact
set T ∗2 (BY ∗) ⊂ (Z∗, w∗) onto the w∗-compact set T ∗(BY ∗) ⊂ (X∗, w∗) that
is fragmented by the norm of X∗, see [12, Lemma 2.1], and our observation is
proved. (Alternatively, the observation can be proved using [20, Theorem 2.11]
and [6, Theorem 4.2.13].)

Now we really start the proof of the lemma. Use that B ⊂ BY ∗ is 1-norming
and pick b∗0 ∈ B such that

|T ∗(b∗0)(x0)| = |b∗0(T (x0))| > 1− ε2

4
.

Defining U1 = {x∗ ∈ X∗ : |x∗(x0)| > 1− ε2

4 }, we have that

T ∗(b∗0) ∈ U1 ∩M ⊂ T ∗(BY ∗) ⊂ BX∗ .

Since T ∗(BY ∗) is fragmented and U1 ∩M is non-empty, there exists a w∗-open
set U2 ⊂ X∗ such that (U1 ∩M) ∩ U2 6= ∅ and

‖·‖- diam
(
(U1 ∩M) ∩ U2

)
≤ ε. (2.1)

Let U := U1 ∩ U2 and fix x∗0 ∈ U ∩M . We have

1 ≥ ‖x∗0‖ ≥ |x∗0(x0)| > 1− ε2

4
.

If we normalize we still have

1 ≥ |x
∗
0(x0)|
‖x∗0‖

≥ |x∗0(x0)| ≥ 1− ε2

4
. (2.2)

Then by applying the Remark 2.2, we obtain y∗ ∈ SX∗ and u0 ∈ SX with
|y∗(u0)| = 1 such that

‖x0 − u0‖ < ε and
∥∥∥∥ x∗0
‖x∗0‖

− y∗
∥∥∥∥ < ε. (2.3)
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Let z∗ ∈ U ∩M be an arbitrary element. Then,

‖z∗ − y∗‖ ≤ ‖z∗ − x∗0‖+

∥∥∥∥x∗0 − x∗0
‖x∗0‖

∥∥∥∥ +

∥∥∥∥ x∗0
‖x∗0‖

− y∗
∥∥∥∥

(2.1),(2.3)
≤ ε+ ‖x∗0‖

∣∣∣∣1− 1

‖x∗0‖

∣∣∣∣ + ε
(2.2)
≤ 3ε,

and the proof is over. �

Theorem 2.4. Let T : X → C0(L) be an Asplund operator with ‖T‖ = 1.
Suppose that 1

2 > ε > 0 and x0 ∈ SX are such that

‖T (x0)‖ > 1− ε2

4
.

Then there are u0 ∈ SX and an Asplund operator S ∈ SL(X,C0(L)) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < ε and ‖T − S‖ ≤ 3ε.

Proof. The natural embedding ξ : L → C0(L)∗ given by ξ(s) := δs, for s ∈ L,
is continuous for the topology of L and the w∗-topology in C0(L)∗. Hence the
composition φ := T ∗ ◦ ξ : L→ X∗ is continuous for the w∗ topology in X∗.

Apply now Lemma 2.3 for Y := C0(L), B := {δs : s ∈ L} ⊂ BC0(L)∗ , our
given operator T, and ε. We produce the w∗-open set U and the functional y∗ ∈
SX∗ satisfying properties (a) and (b) in the aforesaid lemma. Note that with our
new notation we have φ(L) = M . Since U ∩M 6= ∅ we can pick s0 ∈ L such that
φ(s0) ∈ U . The w∗-continuity of φ ensures that the set W = {s ∈ L : φ(s) ∈ U}
is an open neighborhood of s0. By Urysohn’s lemma, [15, Lemma 2.12], we can
find a continuous function f : L→ [0, 1] with compact support, satisfying:

f(s0) = 1 and supp(f) ⊂W. (2.4)

Define now the linear operator S : X → C0(L) by the formula

S(x)(s) = f(s) · y∗(x) + (1− f(s)) · T (x)(s). (2.5)

It is easily checked that S is well-defined and that ‖S‖ ≤ 1. On the other hand,
1 = |y∗(u0)| = |S(u0)(s0)| ≤ ‖S(u0)‖ ≤ 1 and therefore S attains the norm at
the point u0 ∈ SX for which we had ‖u0 − x0‖ < ε.

Now, bearing in mind (2.4), (2.5), Lemma 2.3 and the definition of W we con-
clude that

‖T − S‖ = sup
x∈BX

‖Tx− Sx‖ = sup
x∈BX

sup
s∈L

f(s)|T (x)(s)− y∗(x)|

= sup
x∈BX

sup
s∈W

f(s)|φ(s)(x)− y∗(x)| ≤ sup
s∈W

sup
x∈BX

|φ(s)(x)− y∗(x)|

= sup
s∈W
‖φ(s)− y∗‖ ≤ 3ε.

To finish we prove that S is also an Asplund operator. This is based on the fact
that the family of Asplund operators between Banach spaces is an operator ideal,
see [20, Theorem 2.12]. Observe that S appears as the sum of a rank one operator
and the operator x 7→ (1 − f)T (x); the latter is the composition of a bounded
operator from C0(L) into itself with T . Therefore S is an Asplund operator and
the proof is over. �

If we denote by A the ideal of Asplund operators between Banach spaces, the
above theorem applies as well to any sub-ideal I ⊂ A.
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Corollary 2.5. Let I ⊂ A be an operator ideal. Let T ∈ I(X,C0(L)) with
‖T‖ = 1, 1

2 > ε > 0, and x0 ∈ SX be such that

‖T (x0)‖ > 1− ε2

4
.

Then there are u0 ∈ SX and S ∈ I(X,C0(L)) with ‖S‖ = 1 satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < ε and ‖T − S‖ ≤ 3ε.

We should stress that because W ⊂ A, see [7], the above corollary applies in
particular to the ideals of finite rank operatorsF , compact operatorsK, p-summing
operators Πp and of course to the weakly compact operators W themselves. Re-
sults in this vein can be found in the literature for weakly compact operators but,
with spaces of continuous functions as domain spaces and only for the so-called
Bishop-Phelps property: Schachermayer proved, see [17, Theorem B], that any
T ∈ W(C(K), X) can be approximated by norm attaining operators. This result
was generalized later for operators T ∈ W(C0(L), X), see [2]). With spaces
of continuous functions in the range, Johnson and Wolfe, see [10, Theorem 3],
proved that any T ∈ K(X,C(K)) can be approximated by finite rank norm attain-
ing operators. Note then, that our corollary 2.5 adds several new versions of the
vector-valued Bishop-Phelps theorem. Moreover, these cases provide the Bollobás
part of approximation of points at which the norm is attained.

Standard ε − δ tricks suffice to prove that for a pair of Banach spaces (X,Y )
the following are equivalent:

(i) (X,Y ) has BPBP according to definition 1;
(ii) there are functions η : (0,+∞) → (0, 1), β, γ : (0,+∞) → (0,+∞)

with lim
t→0

β(t) = lim
t→0

γ(t) = 0, such that given ε > 0, for all T ∈ SL(X,Y ),

if x0 ∈ SX is such that ‖T (x0)‖ > 1 − η(ε), then there exist a point
u0 ∈ SX and S ∈ SL(X,Y ) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < β(ε) and ‖T − S‖ < γ(ε).

Once again, in (ii) above we can always take β(t) = γ(t) = t, but of course
changing η if needed!. Consequently we arrive to the following straightforward
consequence of theorem 2.4:

Corollary 2.6. For any Asplund spaceX and any locally compact Hausdorff topo-
logical space L the pair (X,C0(L)) has the BPBP.

Note that this corollary extends and strengthens Theorem 2 in [10]; we stress
also that we can take as X any c0(Γ) (Γ arbitrary set), or more generally any
C0(S) where S is a scattered locally compact Hausdorff space (see, for instance,
[14] for scattered or dispersed spaces). Indeed for a locally compact space S, the
space C0(S) is Asplund if, and only if, S is scattered. This can be proved in the
following way:

(1) It is known that for K compact, C(K) is Asplund if, and only if, K is
scattered, combine [14, Main Theorem] with theorem 2.1 or alternatively see [13,
Theorem 18].

(2) It is easy to check that if S is locally compact, then S is scattered if, and only
if, its Alexandroff compactification S ∪ {∞} is scattered,

(3) Use now that Asplundness is a three space property, see [13, Theorems
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11,12 and 14], and conclude that C0(S) is Asplund if, and only, if C(S ∪ {∞}) is
Asplund.

(4) Summarizing, C0(S) is Asplund if, and only if, S is scattered.

Note that whereas the hypothesis of X being Asplund in the above corollary is
an isomorphic property, for the range space we have to use the sup norm in C0(L).
Indeed, Lindenstrauss [11, Proposition 4] established that if (c0, ‖·‖) is a strictly
convex renorming of c0 then id : c0 → (c0, ‖·‖) cannot be approximated by norm
attaining operators. Notice also, that corollary 2.6 may fail whenX is not Asplund:
Schachermayer [17] gave an example of an operator T ∈ L(L1[0, 1], C[0, 1]) that
cannot be approximated by norm attaining operators.

With our comments above together with theorem 2.4 we have:

Corollary 2.7. For any Banach space X and any scattered locally compact Haus-
dorff topological space L the pair (X,C0(L)) has the BPBP.

An alternative proof for this corollary can be obtained using the fact that for
such an L the space Y = C0(L) has property (β), see [16, Definition 1.2], and for
spaces Y with property (β), every pair (X,Y ) has BPBP, see [1, Theorem 2.2].

In a different line of ideas, and to finish the paper, we point out that Linden-
strauss proved in [11, Theorem 1] that every operator T ∈ L(X,Y ) can be
approximated by operators S ∈ L(X,Y ) such that S∗∗ ∈ L(X∗∗, Y ∗∗) attains
the norm on BX∗∗ . In [1, Example 6.3] it is established that the counterpart of
the above Lindenstrauss’ result is not longer valid for the corresponding natural
Bishop-Phelps-Bollobás with bi-adjoints operators. The example again uses c0 as
a domain space. Replacing Y ∗∗ by C(BY ∗ , w∗), we state our last result.

Corollary 2.8. Let T : X → Y be an Asplund operator with ‖T‖ = 1, 1
2 > ε > 0

and x0 ∈ SX be such that

‖T (x0)‖ > 1− ε2

4
.

Then there are u0 ∈ SX and an Asplund operator S ∈ SL(X,C(BY ∗ )) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < ε and ‖i ◦ T − S‖ ≤ 3ε,

where i : Y ↪→ C(BY ∗) is the natural embedding.
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REFERENCES

[1] Marı́a D. Acosta, Richard M. Aron, Domingo Garcı́a, and Manuel Maestre, The Bishop-
Phelps-Bollobás theorem for operators, J. Funct. Anal. 254 (2008), no. 11, 2780–2799.
MR MR2414220 (2009c:46016)

[2] J. Alaminos, Y. S. Choi, S. G. Kim, and R. Payá, Norm attaining bilinear forms on spaces
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