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ABSTRACT. Measures of weak noncompactness are formulae that quantify dif-
ferent characterizations of weak compactness in Banach spaces: we deal here
with De Blasi’s measure ω and the measure of double limits γ inspired by
Grothendieck’s characterization of weak compactness. Moreover for bounded
sets H of a Banach space E we consider the worst distance k(H) of the weak∗-
closure in the bidual H of H to E and the worst distance ck(H) of the sets
of weak∗-cluster points in the bidual of sequences in H to E. We prove the
inequalities

ck(H)
(I)
≤ k(H) ≤ γ(H)

(II)
≤ 2 ck(H) ≤ 2 k(H) ≤ 2ω(H)

which say that ck, k and γ are equivalent. If E has Corson property C then (I) is
always an equality but in general constant 2 in (II) is needed: we indeed provide
an example for which k(H) = 2 ck(H). We obtain quantitative counterparts to
Eberlein-Smulyan’s and Gantmacher’s theorems using γ. Since it is known that
Gantmacher’s theorem cannot be quantified using ω we therefore have another
proof of the fact that γ and ω are not equivalent. We also offer a quantitative
version of the classical Grothendieck’s characterization of weak compactness in
spaces C(K) using γ.

1. INTRODUCTION

We use topological tools to study measures of weak noncompactness in Banach
spaces. Measures of noncompactness or weak noncompactness have been success-
fully applied in operator theory, differential equations and integral equations, see
for instance [1, 3, 4, 9, 14, 15] and [16]. We deal here with the following non-
negative functions defined on the family of bounded sets H of Banach spaces E,
see Definition 1:

I ω(H) is the worst distance from H to weakly compact sets of E,
I γ(H) is the worst distance between iterated limits for sequences in H and

sequences in the dual unit ball BE∗ ,
I k(H) is the worst distance to E of points of the weak∗-closure Hw∗ of H

in the bidual E∗∗,
I ck(H) is the worst distance to E of the sets of weak∗-cluster points in the

bidual E∗∗ of sequences in H .

The function ω was introduced by de Blasi [4] as a measure of weak noncom-
pactness that can be regarded as the counterpart for the weak topology of the classi-
cal Hausdorff measure of norm noncompactness. The function γ already appeared
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in [1] and in [15, Theorem 2.2]: in the latter the sup is taken over all the se-
quences in the convex hull convH instead of sequences only in H: very recently
γ has been implicitly used in [5] and [8] where it has been proved, amongst other
things, that γ(H) = γ(conv(H)) which says that our definition for γ is equiv-
alent to the one given in [15]. k has been used in [5, 8, 11]. Whereas ω and
γ are measures of weak noncompactness in the sense of the axiomatic definition
given in [2] the function k fails to satisfy k(convH) = k(H), see [12], that is
one of the properties required in order to be a measure of weak noncompactness.

H
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Figure 1

Nonetheless, k as well as γ and ω does satisfy the con-
dition k(H) = 0 if, and only if, H is relatively weakly
compact in E. This fact for k is illustrated in the ad-
jacent figure. Notice that for the bounded subset H of
E the weak∗-closure Hw∗ in E∗∗ is weak∗-compact

and therefore k(H)
Figure 1

=: d̂ = 0 is equivalent to
have Hw∗ ⊂ E and thus equivalent to say that H is
relatively weakly compact in E.

The paper is organized as follows.
In section 2, see Theorem 2.3, we prove that for

any bounded subset in a Banach space E we have the
inequalities

ck(H) ≤ k(H) ≤ γ(H) ≤ 2 ck(H) ≤ 2 k(H) ≤ 2ω(H).

By doing so we establish that ck, k and γ are equivalent; we provide a quantitative
version of the angelicity of a Banach space for the weak topology. We study when
ck = k and we prove that this is the case for the class of Banach spaces with Corson
property C, Proposition 2.6. We also give an example for which k(H) = 2 ck(H),
Example 2.5. Our results here can be viewed as a quantitative counterpart of the
classical Eberlein-Smulyan’s theorem about weak compactness in Banach spaces.

Section 3 is started with Lemma 3 that links the ε-interchanging of limits with
a compact space and the ε-interchanging of limits with some dense subset of it.
This is a common tool that is used to prove quantitative counterparts for γ of Gant-
macher theorem about weak compactness of adjoint operators in Banach spaces,
Theorem 3.1, and for the classical Grothendieck’s characterization of weak com-
pactness in spaces C(K), Theorem 3.5. We complete this section commenting
on the fact that for the De Blassi measure of weak noncompactness ω, Astala and
Tylli proved in [1] that it is not possible to obtain a quantitative version of Gant-
macher theorem similar to the one in Theorem 3.1: this provides another way of
proving the fact commented in [1] that ω is not equivalent to the measure γ, see
Corollary 3.4.

A bit of terminology: by letters T,X, . . . we denote here sets or completely reg-
ular topological spaces, (Z, d) is a metric space. The space ZX is equipped with
the product topology τp. In ZX we also consider the standard supremum metric,
that abusively is also denoted by d, i.e.,

d(f, g) = sup{d(f(x), g(x)) : x ∈ X}

for functions f, g : X → Z. C(X) is the space of continuous maps from X into
the real line R.
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For A and B nonempty subsets of a metric space (Z, d), we consider the usual
distance between A and B given by

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
and the Hausdorff non-symmetrized distance from A to B defined by

d̂(A,B) = sup{d(a,B) : a ∈ A}.
In this paper (E, ‖·‖) is a Banach space (E if ‖·‖ is tacitly assumed). BE stands
for the closed unit ball in E, E∗ for the dual space and E∗∗ for the bidual space;
w is the weak topology of a Banach space and w∗ is the weak∗ topology in a dual.
We write i : E → E∗∗ to denote the natural embedding of E into its bidual E∗∗
and, as usual, most of the times we will not make any distinction between a given
setH ⊂ E and its imageH = i(H) ⊂ E∗∗. InE∗∗ we always consider the natural
norm and its associated metric.

2. MEASURES OF WEAK NONCOMPACTNESS IN BANACH SPACES

Let H be a bounded subset of the Banach space E. If ϕ ∈ HN is a sequence in
H we write

clustE∗∗(ϕ) :=
⋂
n∈N
{ϕ(m) : m > n}w

∗

to denote the set of cluster points of ϕ in (E∗∗, w∗). We also write Hw∗ to denote
the w∗-closure of H in E∗∗.

Definition 1. Given a bounded subset H of a Banach space E we define:

ω(H) := inf{ε > 0 : H ⊂ Kε + εBE and Kε ⊂ X is w-compact},
γ(H) := sup{| lim

n
lim
m
fm(xn)− lim

m
lim
n
fm(xn)| : (fm) ⊂ BE∗ , (xn) ⊂ H},

assuming the involved limits exist,

ck(H) := sup
ϕ∈HN

d(clustE∗∗(ϕ), E)

and
k(H) := d̂(Hw∗

, E) = sup
x∗∗∈Hw∗

d(x∗∗, E),

where the distance d is the usual inf distance for sets associated to the natural
norm in E∗∗.

Observe that for a bounded set H ⊂ E we have

k(H) := inf{ε > 0 : Hw∗ ⊂ E + εBE∗∗}. (2.1)

The notion below introduced in [5] was first considered by Grothendieck in [13],
for ε = 0. For ε ≥ 0, this concept has also been used, in the framework of Banach
spaces, in [1, 8, 15] amongst others.

Definition 2. Let (Z, d) be a metric space, X a set and ε ≥ 0.
(i) We say that a sequence (fm)m inZX ε-interchanges limits with a sequence

(xn)n in X if

d(lim
n

lim
m
fm(xn), lim

m
lim
n
fm(xn)) ≤ ε

whenever all limits involved do exist.
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(ii) We say that a subsetH of ZX ε-interchanges limits with a subsetA ofX , if
each sequence in H ε-interchanges limits with each sequence in A. When
ε = 0 we simply say that H interchanges limits with A.

Observe that if H is a subset of a Banach space E, then γ(H) ≤ ε if, and only
if Hε-interchanges limits with the dual ball BE∗ .

Our starting point for the results in this section are Propositions 2.1 and 2.2 that
we quote below and Lemma 1 that we prove.

Proposition 2.1 ([5, Corollary 2.6] and [8, Proposition 8]). Let E be a Banach
space and let H be a bounded subset of E. The following properties hold:

(i) if H ε-interchanges limits with BX∗ , then k(H) ≤ ε,
(ii) if k(H) ≤ ε, then H 2ε-interchanges limits with BX∗ .

Proposition 2.2 ([5, Proposition 5.2]). Let (Z, d) be a compact metric space, K
a set, and H ⊂ ZK a set which ε-interchanges limits with K. Then for any

f ∈ HZK

, there is a sequence (fn)n in H such that

sup
x∈K

d(g(x), f(x)) ≤ ε

for any cluster point g of (fn) in ZK .

Lemma 1. Let E be a Banach space and let H be a bounded subset of E. Then H
2 ck(H)-interchanges limits with the dual ball BE∗ .

Proof. Let (fm)m be a sequence in BE∗ , (xn)n a sequence in H and let us assume
that both iterated limits

lim
n

lim
m
fm(xn), lim

m
lim
n
fm(xn)

exist in R. If we fix α ∈ R with α > ck(H) the sequence (xn)n has a w∗-cluster
point z ∈ E∗∗ such that d(z, E)) < α. Take and fix now z′ ∈ E such that

‖z − z′‖ < α. (2.2)

Let us pick f ∈ BE∗ a w∗-cluster point of (fm)m. Since z′ and each xn belongs
to E, f(z′) and f(xn) are, respectively, cluster points in R of fm(z′) and fm(xn).
Hence we can produce a subsequence (fmk

)k of (fm)m such that limk fmk
(z′) =

f(z′). Thus we have that

| lim
k
fmk

(z)− f(z)| ≤

≤ | lim
k
fmk

(z)− lim
k
fmk

(z′)|+ |f(z′)− f(z)|
(2.2)
≤ 2α.

(2.3)

We conclude that
lim
n

lim
m
fm(xn) = lim

n
f(xn) = f(z)

and so
| lim
m

lim
n
fm(xn)− lim

n
lim
m
fm(xn)| =

= | lim
m

lim
n
fm(xn)− f(z)| = | lim

k
fmk

(z)− f(z)|
(2.3)
≤ 2α.

Since α > ck(H) was arbitrary we obtain thatH 2 ck(H)-interchanges limits with
BE∗ . �
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The above preparations lead naturally to the following result.

Theorem 2.3. For any bounded subset H of a Banach space E we have:

ck(H) ≤ k(H) ≤ γ(H) ≤ 2 ck(H) ≤ 2 k(H) ≤ 2ω(H), (2.4)

γ(H) = γ(conv(H)) and ω(H) = ω(conv(H)).

For any x∗∗ ∈ Hw∗ , there is a sequence (xn)n in H such that

‖x∗∗ − y∗∗‖ ≤ γ(H) (2.5)

for any cluster point y∗∗ of (xn)n in E∗∗.
Furthermore, H is weakly relatively compact in E if, and only if, one (equiva-

lently all) of the numbers ck(H), k(H), γ(H) and ω(H) is zero.

Proof. The inequality ck(H) ≤ k(H) straightforwardly follows from the defini-
tions involved. The inequality k(H) ≤ γ(H) is a consequence of statement (i) in
Proposition 2.1. The inequality γ(H) ≤ 2 ck(H) follows from Lemma 1.

The approximation (2.5) straightforwardly follows from Proposition 2.2 after
the convenient identification of (Hw∗

, w∗) as a subspace of ([−M,M ]BE∗ , τp)
where M is a bound for H .

On the other hand γ(H) = γ(conv(H)) has been established in [8, Theorem 13]
and [5, Theorem 3.3]. The equality ω(H) = ω(conv(H)) follows from the very
definition of ω using that the validity of Krein-Smulyan theorem stating that the
closed convex hull of weakly compact sets in Banach spaces are weakly compact.

A well known result of Grothendieck, [7, Lemma 2, p. 227] states that ω(H) =
0 if, and only if, H is relatively weakly compact in E. Observe that as a conse-
quence of (2.4) one of the numbers ck(H), k(H) γ(H) is zero if, and only if, all
of them are zero. Clearly, k(H) = 0 if, and only if, Hw∗ ⊂ E that is equivalent to
the fact that H is relatively weakly compact.

To finish we prove the very last inequality in (2.4). Take ε > 0 and a weakly
compact set Kε ⊂ E such that H ⊂ Kε + εBE . We have that

H
w∗ ⊂ Kε + εBE∗∗ ⊂ E + εBE∗∗ .

If we use (2.1) we obtain k(H) ≤ ω(H) and the proof is over. �

We refer the interested reader to [15] where measures of weak noncompactness
are defined: all of the conditions there are fulfilled by γ and ω and most of them
by ck and k. As a consequence of the above ck, k, γ are equivalent while ω is not
equivalent to the other ones, see Corollary 3.4.

A topological space T is said to be angelic if, whenever H is a relatively count-
ably compact subset of T , its closure H is compact and each element of H is a
limit of a sequence in H . Our references for angelic spaces are [10] and [17].
Theorem 2.3 above is the quantitative version of the angelicity of a Banach space
endowed with its weak topology, Eberlein-Smulyan’s theorem.

Corollary 2.4. If E is a Banach space then (E,w) is angelic.

Proof. Let H be a w-relatively countably compact subset of E. By the very def-
inition every sequence in H has a w-cluster point in E and therefore ck(H) = 0.
Then by Theorem 2.3 we have H is w-relatively compact in E. On the other hand,
let us pick x ∈ H

w. Note that inequality (2.4) implies that γ(H) = 0 and thus
if we use (2.5) we obtain the existence of a sequence (xn)n in H such that every
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w-cluster point y ∈ E of (xn)n satisfies that 0 ≤ ‖y − x‖ ≤ γ(H) = 0. Since
H is w-relatively compact and (xn)n in H and x is the unique w-cluster point of
(xn)n we conclude that (xn)n weakly converges to x and the proof is over. �

Talking about ck and k, it is pretty easy to prove that if E∗ is separable for the
norm, then for every bounded set H ⊂ E we have ck(H) = k(H). Keeping this
in mind it is easy to produce an example showing that constant 2 for the inequality
γ(H) ≤ 2 ck(H) it is truly needed: indeed, take E = c the space of convergent
real sequences and H := Bc its unit ball. On the one hand ck(Bc) = k(Bc) is
equal to 1 after Riesz lemma and on the other hand considering elements of the
type (1, . . . , 1,−1, . . . ,−1, . . . ) and the n-th projections πn : c → R one easily
computes that γ(Bc) = 2, see [15, p. 93].

Now we give a more involved example showing that even for the inequality
k(H) ≤ 2 ck(H) the constant 2 is needed.

Example 2.5. The following example has been communicated to us by Prof. Mar-
ciszewski. Consider [0, ω1] the compact set of all the ordinals smaller or equal to
the first non countable ordinal ω1. Put

K = ({−1, 1} × [0, ω1])/R

where R is the relation defined as xRy if, and only if

x = y or x, y ∈ {(−1, ω1), (1, ω1)}.

Clearly K is a compact set. For α ≺ ω1 define fα : K → R as

fα(i, γ) =
{ 0 if γ � α,
i if γ � α

and put H = {fα : α ≺ ω1} ⊂ C(K). Since H is uniformly bounded and K
is scattered, the w∗-topology in Hw∗ ⊂ C(K)∗∗ = `∞(K) coincides with the
product topology of RK . If (fαn)n is a sequence in H and α := sup{αn : n ∈ N}
then α ≺ ω1 and fαn(i, β) = 0 for all n ∈ N and β � α. So for every β � α we
have that g(i, β) = 0 for each cluster point g of (fαn)n. If we define h : K → R
as h(i, β) = 0 if β � α and h(i, β) = i/2 if β � α then h ∈ C(K) and d(h, g) ≤
1/2 for each cluster point g of (fαn)n. Thus we conclude that ck(H) ≤ 1/2. On
the other hand, the function h′ : K → R defined as h′(i, β) = 0 if β = ω1 and

h′(i, β) = i if β 6= ω1 belongs to HRK

and clearly d(h′, C(K)) = 1. Then

k(H) = d̂(Hw∗
, C(K)) ≥ d(h′, C(K)) ≥ 1 ≥ 2 ck(H)

and therefore by Theorem 2.3 d(Hw∗
, C(K)) = 2 ck(H). �

We will devote the rest of the section to prove that the equality ck = k holds
for a pretty wide class of Banach spaces E enjoying Corson property C. To do
so we isolate first the following easy lemma that is inspired by the proof of [8,
Proposition 14].

Lemma 2. If x∗∗ ∈ E∗∗ \ E and b ∈ R satisfies d(x∗∗, E) > b > 0, then

0 ∈ {x∗ ∈ BE∗ : x∗∗(x∗) > b}w
∗
.
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Proof. We simply prove that for each ε > 0 and finitely many x1, x2, . . . , xn ∈ E
the w∗-neighborhood of the origin in E∗

V (0, x1, x2, . . . , xn, ε) := {y∗ ∈ E∗ : sup
1≤i≤n

|y∗(xi)| < ε}

intersects the set S(x∗∗, b) := {x∗ ∈ BE∗ : x∗∗(x∗) > b}. Hahn-Banach’s theo-
rem provides us with a functional φ ∈ E∗∗∗ such that φ(x) = 0 for every x ∈ E,
‖φ‖ = 1 and φ(x∗∗) = d(x∗∗, E), [6, Corollary 6.8]. We can and do assume that
b < b + ε < d(x∗∗, X). We use Goldstine’s theorem for BE∗ ⊂ BE∗∗∗ to find an
element x∗ in BE∗ such that

|φ(xi)− x∗(xi)| = |x∗(xi)| < ε, i = 1, 2, . . . , n, (2.6)

and
|φ(x∗∗)− x∗∗(x∗)| < ε. (2.7)

The inequalities (2.6) imply that x∗,−x∗ ∈ V (0, x1, x2, . . . , xn, ε). On the other
hand inequality (2.7) implies that

|x∗∗(x∗)| = |(x∗∗(x∗)−φ(x∗∗)) + φ(x∗∗)| ≥
∣∣|x∗∗(x∗)− φ(x∗∗)| − |φ(x∗∗)|

∣∣
= |φ(x∗∗)| − |x∗∗(x∗)− φ(x∗∗)| > b+ ε− ε = b.

All things considered, either x∗ or −x∗ belongs to

V (0, x1, x2, . . . , xn, ε) ∩ S(x∗∗, b)

and the proof is over. �

Recall that a Banach spaceE is said to have Corson property C if each collection
of closed convex subsets of E with empty intersection has a countable subcollec-
tion with empty intersection. If (E,w) is Lindelöf, then E has property C. There
are Banach spaces with Corson property C which are not weakly Lindelöf, [18, p.
146]. It is shown in [18] that the Banach space E has the property C if and only
if, whenever A ⊂ E∗ and x∗ ∈ Aw

∗
, there is a countable subset C of A such that

x∗ ∈ convCw
∗
. In particular Banach spaces with w∗ angelic dual unit balls have

Corson property C.

Proposition 2.6. If E is a Banach space with Corson property C, then for every
bounded set H ⊂ E we have ck(H) = k(H).

Proof. We already know that ck(H) ≤ k(H), Theorem 2.3. Therefore if k(H) = 0
the equality holds. Otherwise, we prove that for every 0 < b < k(H) we have b ≤
ck(H) that clearly implies ck(H) = k(H). For such a b we take x∗∗ ∈ Hw∗\E
with d(x∗∗, E) > b. Lemma 2 tells us that if we write

S(x∗∗, b) := {x∗ ∈ BE∗ : x∗∗(x∗) > b}

then 0 ∈ S(x∗∗, b)
w∗
. Now, property C of E applies to provide us with a countable

subset C of S(x∗∗, b) such that 0 ∈ convCw
∗
. Since S(x∗∗, b) is convex, there

is a countable set D of S(x∗∗, b) such that 0 ∈ Dw∗ . Since D is countable, Hw∗

is pseudo-metrizable in the topology of pointwise convergence on D. So one can
choose a sequence (hn)n in H that converges to x∗∗ pointwise on D. Therefore, if
h∗∗ is any w∗-cluster point of (hn)n, then h∗∗|D = x∗∗|D. In particular, we have
that

h∗∗(x∗) = x∗∗(x∗) > b,
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for each x∗ ∈ D. On the other hand, since 0 ∈ Dw∗ , for fixed arbitrary h ∈ E and
ε > 0 there is some x∗ ∈ D such that |x∗(h)| < ε. Consequently

‖h∗∗ − h‖ ≥ h∗∗(x∗)− x∗(h) > b− ε.
Since ε and h are arbitrary we conclude that d(h∗∗, E) ≥ b for every w∗-cluster
point h∗∗ of ϕ = (hn)n. We conclude that

ck(H) ≥ d(clustE∗∗(ϕ), E) ≥ b
and the proof is over. �

A different proof of Proposition 2.6 can be given for the particular case of Ba-
nach spaces E with angelic dual unit ball (BE∗ , w∗) that we sketch briefly: in this
case we argue by contradiction. We assume that there is a bounded setH ⊂ E such
that ck(H) < b < k(H). Then we proceed as we did in the proof of Proposition 2.6

taking x∗∗ ∈ Hw∗\E with d(x∗∗, E) > b and 0 ∈ S(x∗∗, b)
w∗
. The angelicity of

(BE∗ , w∗) provides us with a sequence (x∗n)n in S(x∗∗, b) with w∗− limn x
∗
n = 0.

If we define now the linear operator

T : E −→ c0

x  (x∗n(x))n
then ‖T‖ ≤ 1 and one readily computes that ck(T (H)) ≤ ck(H). Following up
the proof of Theorem 3 in [11] one concludes that d(T ∗∗(x∗∗), c0)≥b that leads to

k(T (H))≥d(T ∗∗(x∗∗), c0)≥b>ck(H)≥ck(T (H)),

that contradicts that ck = k in c0 because c∗0 = `1 is separable.
We gratefully acknowledge the comments of Professor V. Kadets that upon the

reading of a preliminary version of this paper, where Proposition 2.6 was proved
for Banach spaces with angelic dual unit ball, came up with some of the ideas we
have presented now that works for the more general Banach spaces with Corson
property C.

Observe that ck(H) = k(H) implies that d̂(Hw∗
, E) = d̂(Hc, E) where

Hc :=
⋃

ϕ∈HN

clustE∗∗(ϕ),

although it might happen that Hc  H
w∗ . Indeed, if Γ is a non countable set then

c0(Γ) is weakly compactly generated, hence weakly Lindelöf and in particular it
has Corson property C. Therefore ck = k in c0(Γ). On the other hand, the unit ball
H := Bc0(Γ) and Hc are made up of functions defined of Γ with countable support

and consequently B`∞(Γ) = H
w∗ contains properly Hc: we have tried to illustrate

Hc in the Figure 1 and where have written ρ̂ = d̂(Hc, E).

3. QUANTITATIVE VERSIONS OF GANTMACHER AND GROTHENDIECK
THEOREMS

The Hausdorff measure of norm noncompactness is defined for bounded sets H
of Banach spaces E as

h(H) := inf{ε > 0 : H ⊂ Kε + εBE and Kε ⊂ X is finite}.
A theorem of Schauder states that a continuous linear operator T : E → F is com-
pact if, and only if, its adjoint operator T ∗ : F ∗ → E∗ is compact. A quantitative
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strengthening of Schauder’s result was proved by Goldenstein and Marcus (cf. [1,
p. 367]) who established the inequalities

1
2

h(T (BE)) ≤ h(T ∗(BF ∗)) ≤ 2 h(T (BE)). (3.1)

For weak topologies Gantmacher established that the operator T is weakly compact
if, and only if, T ∗ is weakly compact. Nonetheless, the corresponding quantitative
version to (3.1) where h is replaced by ω fails for general Banach spaces, see
Remark 3.3. On the positive side we prove in Theorem 3.1 a quantitative version
of Gantmacher result for γ. In order to do this we need first the lemma below that
can be obtained combining Propositions 2.2 and 2.4 in [5]: we prefer to include a
selfcontained straightforward proof for the lemma though.

Lemma 3. Let K be a compact topological space, D a dense subset of K, H a
uniformly bounded subset of C(K) and ε > 0. If H ε-interchanges limits with D,
then H 2ε-interchanges limits with K.

Proof. Fix δ > ε. We first prove the claim below:

CLAIM: If f ∈ HRK

, then for every y ∈ K there exist a neighborhood V of y in
K such that

sup
d∈V ∩D

|f(d)− f(y)| ≤ δ. (3.2)

We prove the claim by contradiction: we assume that supd∈U∩D |f(d)−f(y)| > δ
for each neighborhood U of y and we will contradict that H ε-interchanges limits

with D. Indeed, let us write d0 = y. Since f ∈ HRK

, there exist g1 ∈ H such that
|f(d0) − g1(d0)| ≤ 1. Since g1 is continuous there exist a neighborhood U of y
such that |g1(d0)− g1(d)| ≤ 1 for all d in U . By assumption, there is d1 ∈ U ∩D
such that |f(d1) − f(d0)| > δ. Proceeding by recurrence we produce sequences
(dn)n in D and (gn)n in H such that for every n ∈ N we have

|gn(di)− f(di)| ≤
1
n

i = 0, 1, . . . , n− 1 (3.3)

|gj(dn)− gj(d0)| ≤ 1
n

j = 1, . . . , n (3.4)

|f(dn)− f(d0)| > δ. (3.5)

Choosing a subsequence we can assume that (f(dn))n converges in R. Then we
have

lim
n

lim
m
gm(dn)

(3.3)
= lim

n
f(dn),

lim
m

lim
n
gm(dn)

(3.4)
= lim

m
gm(d0)

(3.3)
= f(d0) = f(y),

so

| lim
n

lim
m
gm(dn)− lim

m
lim
n
gm(dn)| = | lim

n
f(dn)− f(y)|

(3.5)

≥ δ,

that contradicts that H ε-interchanges limits with D and finishes the proof of the
claim.

We finish now the proof of the lemma. Take sequences (xn)n in K and (fm)m
in H for which the double limits limn limm fm(xn) and limm limn fm(xn) exist.
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If we take f ∈ HRK

and x ∈ K, cluster points of (fm)m in RK and (xn)n in K,
respectively, then we have

lim
m

lim
n
fm(xn) = lim

m
fm(x) = f(x)

and
lim
n

lim
m
fm(xn) = lim

n
f(xn).

Consequently we obtain that

| lim
n

lim
m
fm(xn)− lim

m
lim
n
fm(xn)| = | lim

n
f(xn)− f(x)| = L.

By the claim there is a neighborhoodU of x such that supd∈U∩D |f(x)−f(d)| ≤ δ.
For every n in N, there exist k > n such that xk ∈ U . Now the claim ap-
plies again to provide us with a neighborhood V of xk contained in U such that
supd∈V ∩D |f(xk)− f(d)| ≤ δ. If we pick dk ∈ V ∩D, we have that

|f(xk)− f(x)| ≤ |f(xk)− f(dk)|+ |f(dk)− f(x)| ≤ 2δ.

Thus L ≤ 2δ and since we can repeat this argument for any arbitrary δ > ε, we
conclude that H 2ε-interchanges limits with K. �

Theorem 3.1. Let E and F be Banach spaces, T : E → F an operator and
T ∗ : F ∗ → E∗ its adjoint. Then

γ(T (BE)) ≤ γ(T ∗(BF ∗)) ≤ 2γ(T (BE)).

Proof. If we take sequences (xn)n in BE and (y∗m)m in BF ∗ , the very definition of
T ∗ implies that

lim
n

lim
m
y∗m(T (xn)) = lim

n
lim
m
T ∗(y∗m)(xn),

lim
m

lim
n
y∗m(T (xn)) = lim

m
lim
n
T ∗(y∗m)(xn)

(3.6)

whenever the limits in the left hand sides (or the right hand sides) do exist. Hence,
if (xn)n and (y∗m)m are as above assuming that the limits on the left hand side
of (3.6) exist then

| lim
n

lim
m
y∗m(T (xn))− lim

m
lim
n
y∗m(T (xn))| ≤ γ(T ∗(BF ∗)).

Consequently we obtain that γ(T (BE)) ≤ γ(T ∗(BF ∗)).
The other way around, if (xn)n and (y∗m)m are as above assuming that the limits

on the right hand side of (3.6) exist then

| lim
n

lim
m
T ∗(y∗m)(xn)− lim

m
lim
n
T ∗(y∗m)(xn)| ≤ γ(T (BE)).

In other words, we get that T ∗(BF ∗) ⊂ C(BE∗∗ , w∗) γ(T (BE))-interchanges
limits with BE ⊂ BE∗∗ . Since BE is w∗-dense in BE∗∗ we can apply Lemma 3 to
obtain γ(T ∗(BF ∗)) ≤ 2γ(T (BE)). �

Corollary 3.2 (Gantmacher). Let E and F be Banach spaces, T : E → F an
operator and T ∗ : F ∗ → E∗ its adjoint. T is weakly compact if, and only if, T ∗ is
weakly compact.

Proof. Theorems 3.1 and 2.3 apply to conclude that γ(T (BE)) = 0 (i.e. T (BE)
is relatively weakly compact) if, and only if, γ(T ∗(BF ∗)) = 0 (i.e. T ∗(BF ∗) is
relatively weakly compact). �
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Remark 3.3. Astala and Tylli constructed in [1, Theorem 4] a separable Banach
space E and a sequence (Tn)n of operators Tn : E → c0 such that

ω(T ∗n(B`1)) = 1 and ω(T ∗∗n (B∗∗E )) ≤ w(Tn(BE)) ≤ 1
n
.

Note that this example says, in particular, that there are no constants m,M > 0
such that for any bounded operator T : E → F we have

mω(T (BE)) ≤ ω(T ∗(BF ∗)) ≤Mω(T (BE)).

Corollary 3.4. γ and ω are not equivalent measures of weak noncompactness,
namely there is no N > 0 such that for any Banach space and any bounded set
H ⊂ E we have

ω(H) ≤ Nγ(H). (3.7)

Proof. If we assume that there isN satisfying (3.7), then inequality (2.4) allows us
to complete inequality (3.7) as

1
2
γ(H) ≤ ω(H) ≤ Nγ(H),

for any bounded subset H of any arbitrary Banach space E. Theorem 3.1 applies
to conclude that for any bounded operator between arbitrary Banach spaces T :
E → F we have to have

1
2N

ω(T (BE)) ≤ ω(T ∗(BF ∗)) ≤ 4Nω(T (BE))

that contradicts the example in Remark 3.3. �

We have to stress that the fact that γ and ω are not equivalent has been noted in
[1, Corollary 5 and p. 372]: Astala and Tylli proved in their Corollary 5 that there
exist a separable Banach space E, a linear isometry J : E → `∞ and a sequence
(Bn)n of bounded sets of E with ω(Bn) = 1 and ω(JBn) ≤ 1

n for each n ∈ N.
But γ(IB) = γ(B) for all linear isometries I so γ and ω are not equivalent.

To finish, we give another application of the techniques we have developed here:
we prove a quantitative strengthening of Grothendieck’s classical characterization
of weakly compact sets in spaces C(K). If H ⊂ C(K) we define

γK(H) := sup{| lim
n

lim
m
fm(xn)− lim

m
lim
n
fm(xn)| : (fm) ⊂ H, (xn) ⊂ K}.

Theorem 3.5. LetK be a compact space and letH be a uniformly bounded subset
of C(K). Then we have

γK(H) ≤ γ(H) ≤ 2γK(H).

Proof. The inequality γK(H) ≤ γ(H) is clear. Let us prove the second inequality:
fix M > 0 a uniform bound for H . For every x ∈ K let us write δx : C(K) → R
to denote the Dirac measure at x and let us define D := {±δx : x ∈ K}. If we
consider D|H ⊂ [−M,M ]H , then D|H γK(H)-interchanges limits with H , there-
fore we can apply [5, Theorem 3.3] to obtain that conv(D)|H γK(H)-interchanges
limits with H . In other words, H γK(H)-interchanges with conv(D) ⊂ BC(K)∗ .
Since conv(D) is w∗-dense in BC(K)∗ we can apply Lemma 3 to obtain that H
2γK(H)-interchanges with BC(K)∗ , i.e., γ(H) ≤ 2γK(H). �

Since a bounded subset H of a Banach space is τp-relatively compact if, and
only if γK(H) = 0 (see [10, p.12] or [5, Corollary 2.5]), we get the following
corollary.
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Corollary 3.6. LetK be a compact space and letH be a uniformly bounded subset
ofC(K), thenH is τp-relatively compact if, and only if,H isw-relatively compact.
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[8] M. Fabian, P. Hájek, V. Montesinos, and V. Zizler, A quantitative version of Krein’s theorem,
Rev. Mat. Iberoamericana 21 (2005), no. 1, 237–248. MR MR2155020 (2006b:46011)

[9] M. Fan, Lions-Schechter’s methods of complex interpolation and some quantitative estimates,
J. Approx. Theory 140 (2006), no. 1, 46–60. MR MR2226676 (2007c:46021)

[10] K. Floret, Weakly compact sets, Lecture Notes in Mathematics, vol. 801, Springer, Berlin, 1980,
Lectures held at S.U.N.Y., Buffalo, in Spring 1978. MR 82b:46001

[11] A. S. Granero, An extension of the Krein-Smulian Theorem, Rev. Mat. Iberoamericana 22
(2005), no. 1, 93–110.
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