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Abstract. We study classes of filters F on N such that weak
and strong F -convergence of sequences in `1 coincide. We study
also analogues of `1 weak sequential completeness theorem for
filter convergence.

1. Preliminaries

Every theorem of classical Analysis, Functional Analysis or of the
Measure Theory that states a property of sequences leads to a class of
filters for which this theorem is valid. Sometimes such class of filters is
trivial (say, all filters or the filters with countable base), but in several
cases this approach leads to a new class of filters, and the characteriza-
tion of this class can be a very non-trivial task. Among such non-trivial
examples there are Lebesgue filters (for which the Lebesgue dominated
convergence theorem is valid), Egorov filters which correspond to the
Egorov theorem on almost uniform convergence [7], and those filters F
for which every weakly F convergent sequence has a norm-bounded
subsequence [6].

One of the reasons to study such questions is that they bring a new
light to the classical results. Say, it is known, that the dominated
convergence theorem can be deduces from the Egorov theorem. The
question, whether the opposite direction takes place has no sense in
the classical context: if both the theorems are true, how one can see
that one of them is not deducible from the other one? But if one looks
at the correspondent classes of filters, the problem makes sense and in
fact there are Lebesgue filters which are not Egorov ones (in particular
the statistical convergence filter).

In this paper we study the Schur theorem on coincidence of weak
and strong convergence in `1 in a general setting when the ordinary
convergence of sequences is substituted by a filter convergence. We
show that for some filters this theorem is valid and for some is not
and give necessary conditions and sufficient conditions (close one to
another) for its validity. After that we consider the Schur theorem
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for ultrafilters. We also study a related problem of weak sequential
completeness for filter convergence.

Recall that a filter F on a set N is a not-empty collection of subsets
of N satisfying the following axioms: ∅ /∈ F ; if A, B ∈ F then
A
⋂

B ∈ F ; and for every A ∈ F if B ⊃ A then B ∈ F . Allover
the paper if the contrary is not stated directly we consider filters on a
countable set N . Sometimes for simplicity we put N = N .

A sequence xn , n ∈ N in a topological space X is said to be F -
convergent to x (and we write x = F − lim xn or xn →F x ) if for
every neighborhood U of x the set {n ∈ N : xn ∈ U} belongs to F .

In particular if one takes as F the filter of those sets whose comple-
ment is finite (the Fréchet filter) then F -convergence coincides with
the ordinary one.

The natural ordering on the set of filters on N is defined as follows:
F1 � F2 if F1 ⊃ F2 . If G is a centered collection of subsets (i.e. all
finite intersections of the elements of G are non-empty), then there is
a filter containing all the elements of G . The smallest filter, containing
all the elements of G is called the filter generated by G .

Let F be a filter. A collection of subsets G ⊂ F is called the base
of F if for every A ∈ F there is a B ∈ G such that B ⊂ A .

A filter F on N is said to be free if it dominates the Fréchet fil-
ter. All the filters below are supposed to be free. In particular every
ordinary convergent sequence will be automatically F -convergent.

A maximal in the natural ordering filter is called an ultrafilter. The
Zorn lemma implies that every filter is dominated by an ultrafilter. A
filter F on N is an ultrafilter if and only if for every A ⊂ N either
A or N \ A belongs to F .

A subset of N is called stationary with respect to a filter F (or just
F -stationary) if it has nonempty intersection with each member of the
filter. Denote the collection of all F -stationary sets by F∗ . For an
I ∈ F∗ we call the collection of sets {A∩I : A ∈ F} the trace of F on
I (which is evidently a filter on I ), and by F(I) we denote the filter
on N generated by the trace of F on I . Clearly F(I) dominates
F . Any subset of N is either a member of F or the complement of
a member of F or the set and its complement are both F -stationary
sets. F∗ is precisely the union of all ultrafilters dominating F . F∗

is a filter base if and only if it is equal to F and F is an ultrafilter.

Theorem 1.1. Let X be topological space, xn, x ∈ X and let F be a
filter on N . Then the following conditions are equivalent

(1) xn is F -convergent to x ;
(2) xn is F(I) -convergent to x for every I ∈ F∗ ;
(3) x is a cluster point of (xn)n∈I for every I ∈ F∗ .

Proof. Implications (1)⇒ (2) and (2)⇒ (3) are evident. Let us prove
that (3)⇒ (1). Suppose xn do not F -converge to x . Then there is
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such a neighborhood U of x that in each A ∈ F there is a j ∈ A
such that xj 6∈ U . Consequently I = {j ∈ N : xj 6∈ U} is stationary
and x is not a cluster point of (xn)n∈I . �

More about filters, ultrafilters and their applications one can find in
every advanced General Topology textbook, for example in [10].

For the standard Banach space terminology we refer to [8]. All the
spaces, functionals and operators (although this does not matter) are
assumed to be over the field of reals. Before we pass to the main results
let us recall some notations and geometric properties of `1 . Denote by
en the n -th element of the canonical basis of `1 and by e∗n the n -th
coordinate functional on `1 . In this notations for every x ∈ `1 we
have

x =
∑
n∈N

e∗n(x)en.

Recall that en are separated from 0 by the functional f(x) =∑
n∈N e∗n(x) , i.e. 0 is not a weak cluster point of (en) . The following

lemma can be easily extracted from the block-basis selection method
(see [8], volume 1). We give the proof for completeness.

Lemma 1.2. Let yn ∈ `1 , infn∈N ‖yn‖ = ε0 > ε > 0 and
let {m(n)} be an increasing sequence of naturals. Denote zi =∑

k∈(m(i),m(i+1)] e
∗
k(yi)ek . If under these notations supn∈N ‖yn − zn‖ <

ε/2 (i.e. (yn) is a small perturbation of the block-basis (zn) ) then
(yn) is equivalent to the sequence ‖yn‖en and consequently 0 is not a
weak cluster point of (yn) .

Proof. We must find c1, c2 > 0 such that for every collection of scalars
an

c1

∑
n∈N

|an|‖yn‖ ≤

∥∥∥∥∥∑
n∈N

anyn

∥∥∥∥∥ ≤ c2

∑
n∈N

|an|‖yn‖.

The upper estimate with c2 = 1 follows immediately from the trian-
gular inequality. The lower one holds with c1 = 1− ε0/ε∥∥∥∥∥∑

n∈N

anyn

∥∥∥∥∥ ≥∑
n∈N

|an|‖zn‖ −
∑
n∈N

|an|‖yn − zn‖ ≥

∑
n∈N

|an|‖yn‖ − 2
∑
n∈N

|an|‖yn − zn‖ ≥
(

1− ε

ε0

)∑
n∈N

|an|‖yn‖.

�

2. Simplified Schur property for filters

There are several natural ways to generalize the Schur theorem for
filters instead of sequences. Let us start with that one which leads
to a class of filters which we are able to characterize completely in
combinatorial terms.
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Definition 2.1. A filter F on N is said to be a simple Schur filter (or
is said to have the simplified Schur property) if for every coordinate-
wise convergent to 0 sequence xn ∈ `1 if xn weakly F -converges to 0
then F − lim ‖xn‖ = 0 .

For an infinite set I ∈ N let us call a blocking of I a disjoint partition
D = {Dk}k∈N of I into non-empty finite subsets.

Definition 2.2. A filter F on N is said to be block-respecting if for
every I ∈ F∗ and for every blocking D of I there is a J ∈ F∗ , J ⊂ I
such that |J ∩Dk| = 1 for all k , where the “modulus” of a set stands
for the number of elements in the set.

Remark 2.3. If in the definition above one writes

(2.1) ∀k∈N|J ∩Dk| ≤ 1

instead of |J ∩Dk| = 1 , one obtains an equivalent definition.

Remark 2.4. If F is block-respecting, then F(J) for every J ∈ F∗ is
also block-respecting.

Lemma 2.5. Let F be a block-respecting filter and let xn ∈ `1 form a
coordinate-wise convergent to 0 sequence, which does not F -converge
to 0 in norm. Then there is a J ∈ F∗ , such that the sequence xn, n ∈ J
is equivalent to aiei , where ei form the canonical basis of `1 , ai ≥ 1 .

Proof. Due to the Theorem 1.1 there is an I ∈ F∗ such that
infn∈I ‖xn‖ > ε > 0 . Fix a decreasing sequence of δk > 0,

∑
k∈N δk ≤

ε/8 . Using the definition of `1 let us select an increasing sequence of
naturals {m(n)} and such that for every n ∈ N

(2.2)
∑

k≥m(n)

|e∗k(xn)| < δn

and using the coordinate-wise convergence of xn to 0 select an increas-
ing sequence of integers {ni} such that n0 = 0 , Di := (ni−1, ni]∩I 6= ∅
and for every i ∈ N and j ≥ ni+1

(2.3)
∑

k≤m(ni)

|e∗k(xj)| < δi.

Taking in account the respect which F has to the blocks Di let us
select a J = {j1, j2, . . .} ∈ F∗ , J ⊂ I such that ji ∈ (ni−1, ni] for all
i ∈ N . Since J ∈ F∗ , either J1 = {j1, j3, j5 . . .} or J2 = {j2, j4, j6 . . .}
is an F -stationary set as well. Let, say, J2 ∈ F∗ . Let us show
that in fact vectors yi = xj2i

are small perturbations of the block-
basis zi =

∑
k∈(m(n2(i−1)),m(n2i)]

e∗k(yi)ek , which due to the Lemma 1.2

completes the proof. So:

‖yi − zi‖ =
∑

k≤m(n2i−2)

|e∗k(xj2i
)|+

∑
k>m(n2i)

|e∗k(xj2i
)|.
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Taking into account inequalities (2.2), (2.3) and that j2i ∈ (n2i−1, n2i] ,
we get ‖yi − zi‖ ≤ 2δj2i

which implies the condition of Lemma 1.2.
�

Theorem 2.6. A filter F on N has the simplified Schur property if
and only if F is block-respecting.

Proof. The “if” part of the theorem follows immediately from the
Lemma 2.5. So let us turn to the “only if” part. Assume that F
is not block-respecting, i.e. there is an I ∈ F∗ and there is a blocking
D of I such that every J ⊂ I satisfying (2.1) is not F -stationary.
In other words N \ J ∈ F for every J ⊂ I satisfying (2.1). Since the
finite intersection of the filter elements again belongs to F , we can
reformulate the fact that F is not block-respecting as follows: there is
an I ∈ F∗ and such a blocking D = {Dk}k∈N of I that N \ J ∈ F
for every J ⊂ I satisfying

(2.4) sup
k∈N

|J ∩Dk| < ∞.

Now, using Dvoretzky’s almost Euclidean section theorem let us select
an increasing sequence of integers 0 = m0 < m1 < m2 < . . . and a
sequence of vectors xn ∈ `1 such that xn = 0 when n 6∈ I ; xn ∈
Lin{ek}k∈(mi−1,mi] when n ∈ Di and for every collection of scalars an

(2.5)

(∑
n∈Di

|an|2
)1/2

≤

∥∥∥∥∥∑
n∈Di

anxn

∥∥∥∥∥ ≤
(

2
∑
n∈Di

|an|2
)1/2

.

This sequence converges coordinate-wise to 0 and is not F -convergent
to 0 in norm, because ‖xn‖ ≥ 1 for every n ∈ I . Let us prove xn ’s
weak F -convergence to 0, which will show that F does not have the
simplified Schur property. Well, take an f ∈ `∗1 with ‖f‖ = 1 , fix
an ε > 0 and consider the set of indexes A = {n : f(xn) < ε} . We
must prove that A ∈ F . Since the complement of A lies in I , it is
sufficient to show that J = N \ A = {n : f(xn) ≥ ε} satisfies (2.4). In
other words we must estimate dk = |J ∩Dk| from above uniformly in
k . Let us do this. Consider yk =

∑
n∈J∩Dk

xn . Then f(yk) ≥ εdk and

due to (2.5) ‖yk‖2 ≤ 2dk . Hence

εdk ≤ f(yk) ≤
√

2dk

and dk ≤ 2/ε2 . �

Remark 2.7. One can see that in the “only if” part of the Theorem
2.6 proof the sequence xn is bounded by

√
2 . So, if one restricts

the Definition 2.1 to the bounded sequences, the class of filters does
not change. In fact this is a little bit surprising because a weakly
F convergent sequence can converge to infinity in norm [6]. If one
analyzes the characterization [6] of those “good” filters F for which
every weakly F convergent sequence has a norm-bounded subsequence,
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one can see that every simple Schur filter is “good”. The only obstacle
to see this without refereeing to [6] is the coordinate-wise convergence
which appears in the Definition 2.1. To see that this obstacle is not
fatal one really needs to go into the proofs of [6].

3. Schur filters

Let us pass now to the study of the most natural Schur theorem gen-
eralization, which is easier to formulate, but is much more complicated
to characterize in combinatorial terms.

Definition 3.1. A filter F on N is said to be a Schur filter (or is
said to have the Schur property) if for every weakly F -convergent to
0 sequence xn ∈ `1 , n ∈ N the F − lim ‖xn‖ equals 0.

Evidently, every Schur filter has the simplified Schur property. By
now we don’t know if the converse holds true as well.

To simplify the exposition we mostly consider N = N , but the
general case cannot differ from this particular one.

Definition 3.2. F is said to be a diagonal filter if for every decreasing
sequence An ∈ F of the filter elements and for every I ∈ F∗ there is
a J ∈ F∗ , J ⊂ I such that |J \ An| < ∞ for all n ∈ N .

Lemma 3.3. If a filter F on N is diagonal then for every I ∈ F∗ and
for every coordinate-wise F -convergent to 0 sequence xn ∈ `1 there is
a J ∈ F∗ , J ⊂ I such that xn coordinate-wise converge to 0 along
J .

Proof. Fix a decreasing sequence subsets Un , forming a base of neigh-
borhoods of 0 in the topology of coordinate-wise convergence. Define
An = {k ∈ N : xk ∈ Un} . Since F is diagonal there is a J ∈ F∗ ,
J ⊂ I such that |J \ An| < ∞ for all n ∈ N . This is the J we
desire. �

Remark 3.4. As one can see from the proof the only property of the
coordinate-wise convergence topology we used is the countable base of
0 neighborhoods existence. Also one can easily prove the inverse to the
Lemma 3.3 result: if F is not diagonal, then there is a I ∈ F∗ and
a coordinate-wise F -convergent to 0 sequence xn ∈ `1 such that for
every J ∈ F∗ , J ⊂ I the sequence xn does not converge coordinate-
wise to 0 along J .

Let us demonstrate this inverse theorem. By the negation of the
diagonality definition a decreasing sequence of An ∈ F and an I ∈ F∗

exist such that if S ⊂ I satisfies the condition |S \ An| < ∞ for all
n ∈ N then N \ S ∈ F . Without loss of generality one may assume
that all the Dn := An+1 \An are infinite and

⋃
n Dn = I . Then every

J ∈ F∗ , J ⊂ I must satisfy condition

(3.1) |{n ∈ N : |J ∩Dn| = ∞}| = ∞.
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For every n ∈ I denote by f(n) such index that n ∈ Df(n) . Consider
the following sequence xn : for n ∈ N \ I put xn = 0 , and for n ∈ I
put xn = en + ef(n) . This sequence is the one we need.

Theorem 3.5. If a filter F on N is diagonal and is block-respecting
then F has the Schur property.

Proof. Let xn ∈ `1 be weakly F -convergent to 0. Arguing “ad absur-
dum” suppose that there is an I ∈ F∗ such that

(3.2) inf
n∈I

‖xn‖ > ε > 0.

Due to the Lemma 3.3 there is a J ∈ F∗ , J ⊂ I such that xn

coordinate-wise converge to 0 along J . Since F(J) is block-respecting
(Remark 2.4), the condition (3.2) contradicts the Theorem 2.6. �

It was shown in the Theorem 2.6 that the block-respect of F is a nec-
essary condition in order to be a Schur filter. Our next goal is to show
that the diagonality of F is not a necessary condition. To do this define
a special filter on N . Let D = {Dn}n∈N be a disjoint partition of N
into infinite subsets. For every sequence C = {Cn}n∈N of finite subsets
Cn ⊂ Dn and every m ∈ N introduce the set Bm,C =

⋃∞
n=m(Dn \Cn) .

The sets Bm,C form a filter base. Denote the corresponding filter by
FD . One can easily see that FD is an example of not diagonal block-
respecting filter. In fact this filter “almost” appeared in Remark 3.4.
To make the picture more clear, we may represent N as an infinite
matrix N× N , with Dn = {(k, n) : k ∈ N} being its columns.

Definition 3.6. A filter F on N is said to be self-reproducing if for
every I ∈ F∗ there is a J ∈ F∗ , J ⊂ I such that the structure
of the trace of F on J is the same as of the original filter F , i.e.
there is a bijection s : N → J , that maps F into its trace on J :
A ∈ F ⇐⇒ s(A) ∈ F(J) .

Theorem 3.7. FD is a Schur filter, i.e. diagonality is not a necessary
condition for the filter’s Schur property.

Proof. First remark, that a subset J ⊂ N is FD -stationary if and
only if the condition (3.1) is met. In particular, for every infinite subset
M ⊂ N and for every selection of infinite subsets An ⊂ Dn , n ∈ M
the set

⋃
n∈M An is an FD -stationary set. Let us call such sets of the

form
⋃

n∈M An “standard sets”. Every FD -stationary set contains a
standard subset. Remark also that the structure of the trace of FD on
a standard subset J is exactly the same as of the original filter FD ,
i.e. FD is self-reproducing.

To prove the theorem assume contrary that there is a sequence xn ∈
`1 , n ∈ N that FD -weakly converge to zero but the norms do not FD -
converge to zero. So there is an ε > 0 and such a standard set J ⊂ N ,
that ‖xn‖ ≥ ε for all n ∈ J . According to the previous remark, we
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may assume without loss of generality that J = N , i.e ‖xn‖ ≥ ε for all
n ∈ N . Passing from xn to xn/‖xn‖ we may suppose that ‖xn‖ = 1
for all n . For every fixed m ∈ N select a subsequence D′

m ⊂ Dm ,
such that xn, n ∈ D′

m coordinate-wise converge to an element ym ∈ `1 .
Passing to a new standard set of indexes

⋃
m∈N D′

m we reduce the
situation to the case when xn, n ∈ Dm converge coordinate-wise to ym

for every m ∈ N .
Remark that thanks to the weak FD -convergence to zero of the

whole sequence xn, n ∈ N , ym converge coordinate-wise to zero. In
fact, for arbitrary coordinate functional e∗k and for every ε > 0 there
is a set of the form Bm,C such that |e∗k(xj)| < ε for all j ∈ Bm,C .
This means that for i ∈ N , i > m we have

|e∗k(yi)| = lim
j∈Di

|e∗k(xj)| ≤ ε.

This means in its turn the desired coordinate-wise convergence to zero
of ym .

Introduce more notation: for n ∈ N denote by f(n) such index
that n ∈ Df(n) . Put zn = xn − yf(n) . Consider two cases. The first
one: ‖zn‖ →FD

0 . In this case ‖ym‖ → 1 as m → ∞ , but on the

other hand the condition yf(n) = xn−zn
w→FD

0 implies ordinary weak
convergence of ym to 0, which is impossible according to the Schur
theorem. In the remaining case, there is a standard set on which ‖zn‖
are bounded from below, so we may again without loss of generality
assume that ‖zn‖ > ε > 0 for all n ∈ N .

Claim. There is such a standard set J ⊂ N that the sequence
(zn)n∈J is equivalent to the canonical basis of `1 .

Proof of the claim. Fix a decreasing sequence of δk > 0 , k ∈ N ,∑
k∈N δk ≤ ε/8 . Using the definition of `1 let us select naturals m(n)

such that for every n ∈ N the condition∑
k≥m(n)

|e∗k(zn)| < δn

holds true. Take an arbitrary n1 ∈ D1 . Now using consequently the
coordinate-wise convergence to 0 of sequences zn , n ∈ Dm for values
of m = 1, 2, 1, 2, 3, 1, 2, 3, 4, . . . select a sequence ni ∈ N in such a
way that n2 ∈ D1 , n3 ∈ D2 , n4 ∈ D1 , n5 ∈ D2 , n6 ∈ D3 , etc. (like
triangle enumeration of a matrix) and for every i ∈ N∑

k≤s(i)

|e∗k(zni+1
)| < ε

2i+3
,

where s(i) denotes maxk≤i m(nk) . Under this construction J =
{ni}i∈N is a standard set, and zni

is just a small perturbation of the
block-basis wi =

∑
k∈(s(i−1),m(ni)]

e∗k(zni
)ek , which due to the Lemma

1.2 means that the claim is proved.
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Now the last step. Once more without loss of generality assume that
J ⊂ N from the Claim in fact equals N , i.e. (zn)n∈N are equivalent to
the canonical basis of `1 . Then for every bounded sequence of scalars
(an)n∈N there is a functional x∗ ∈ `∗1 such that x∗(zn) = an for all
n ∈ N . Select these an = ±1 in such a way that for every i ∈ N

|{n ∈ Di : an = 1}| = |{n ∈ Di : an = −1}| = ∞.

Then for the corresponding functional x∗ we have for every i ∈ N
lim sup

n∈Di

x∗(xn)− lim inf
n∈Di

x∗(xn) = lim sup
n∈Di

x∗(zn)− lim inf
n∈Di

x∗(zn) = 2,

which contradicts weak FD -convergence of xn . �

4. Category respecting and strongly diagonal filters
and ultrafilters

Let us introduce one more class of filters, which are block-respecting
and diagonal at the same time.

Definition 4.1. F is said to be strongly diagonal if for every decreas-
ing sequence An ∈ F of the filter elements and for every I ∈ F∗ there
is a J ∈ F∗ , J ⊂ I such that

(4.1) |(J ∩ An) \ An+1| ≤ 1 for all n ∈ N.

According to the Theorem 3.5 all strongly diagonal filters have the
Schur property.

Definition 4.2. A filter F on N is said to be category respecting if for
every compact metric space K and for every family of closed subsets
(FA)A∈F of K if

FA ⊂ FB, whenever B ⊂ A in F ,

and K =
⋃

A∈F FA then int(FB) 6= ∅ for some B ∈ F .

The obvious examples of category respecting filters are those of
countable base. Moreover, every filter with a base of cardinality k < m
is category respecting (see [5], p. 3-4 for the definition of m and p.
16, Theorem 13A for the corresponding result). But the Martin Axiom
means that m equals the cardinality of continuum, so if we accept the
Martin Axiom together with negation of the continuum hypothesis, we
could go to some filters with uncountable base.

The proof of Schur property for `1 using the Baire theorem as pre-
sented in [3, Propostion 5.2] gives a hint that category respecting filters
are related to the Schur property. The next theorem shows that in fact
to be category respecting is a stronger restriction than to have the
Schur property.

Theorem 4.3. If F is a category respecting filter on N , then F is
strongly diagonal.
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Proof. Assume contrary that F is not strongly diagonal, i.e. there
is a decreasing sequence An ∈ F of the filter elements and there is
an I ∈ F∗ such that for all J ∈ F∗ , J ⊂ I the condition (4.1) is
not met. Without loss of generality we may assume that the filter is
defined only on I (pass to the trace of F on I ), that

⋂
n∈N An = ∅

(this intersection is not stationary, so we may just erase this intersection
from I ) and that all Dn := An \An+1 are not empty. If one picks up
a sequence of finite subsets

(4.2) Cn ⊂ Dn, sup
n∈N

|Cn| < ∞ then N \
⋃
n∈N

Cn ∈ F .

Let us introduce the following compact topological spaces D̃n : if Dn

is finite then D̃n = Dn with discrete topology; if Dn is infinite then

D̃n = Dn

⋃
{∞n} – the one-point compactification of Dn . Recall that

K =
∏

n∈N D̃n is compact in coordinate-wise convergence topology and
metrizable. Define a family of closed sets (FA)A∈F in K as follows:

FA = {x ∈ K : πn(x) ∈ D̃n \ A for all n ∈ N},

where πn : K → D̃n stands for the n -th coordinate projection. These
sets are closed and have empty interior (the interior could be non-empty
only if for a sufficiently large m Dn ∩ A = ∅ for all n ≥ m , which
is not the case because

⋃
k≥m Dk = Am ∈ F ). For every x ∈ K the

set A(x) = N \
⋃

n∈N{πn(x)} is a filter element (thanks to (4.2)) and
x ∈ FA . So the union of all (FA)A∈F equals K . Contradiction. �

Corollary 4.4. If F is a category respecting filter on N , then F is
a Schur filter.

Corollary 4.5. Every filter with a countable base is strongly diagonal.

Theorem 4.6. Under the assumption of continuum hypothesis there is
a strongly diagonal ultrafilter.

Proof. Denote by Ω the set of all countable ordinals. Let us enumerate
as (I(α), A(α)), α ∈ Ω all the pairs (I, A) , where I is an infinite
subset of N , and A is a decreasing sequence of infinite subsets of
N : A(α) = (An(α))n∈N , N ⊃ A1(α) ⊃ A2(α) . . . . We construct
recurrently an increasing family Fα, α < ω1 of filters with countable
base and an increasing family of sets Ωα ⊂ Ω , as follows: F1 is
the Frechét filter, Ω1 = ∅ . If we have an ordinal of the form α + 1
we proceed as follows: we find the smallest β ∈ Ω \ Ωα such that
I(β) ∈ F∗

α and such that A(β) consists of Fα elements. Applying
Corollary 4.5, we find a J ∈ F∗

α, J ⊂ I = I(β) such that (4.1) holds
true for An = An(β) . Define Fα+1 as the filter generated by Fα and
J , and put Ωα+1 = Ωα ∪ {β} .

If α is a limiting ordinal, put Fα =
⋃

β<αFβ and Ωα =
⋃

β<α Ωβ .
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Define the filter F we need as F =
⋃

β<ω1
Fβ . Let us demonstrate

that F is an ultrafilter. To do this we must prove that F∗ ⊂ F .
Let B ∈ F∗ . Then B ∈ F∗

α for all α . Let β ∈ Ω be the smallest
ordinal, for which I(β) = B and A(β) consists of filter F elements.
Then there is an α , for which all An(β) belong to Fα . If β ∈ Ωα

this means that the pair (I(β), A(β)) has appeared in our recurrent
construction, and a subset J of B (and hence B itself) was added to
the filter. If not, then not later than on the step α + 1 + β this pair
(I(β), A(β)) has appeared in our recurrent construction and a subset
J of B was added to the filter. By the same argument F is strongly
diagonal. �

Remark, that the diagonality of an ultrafilter F is equivalent to the
following well-known property: F is a “P-point of βN ”. The consis-
tency of P-points non-existence is a celebrated result of Shelah [11].
So, since every strongly diagonal filter is diagonal some set theoretic
assumption is needed for the last theorem. By the way in the setting of
ultrafilters a property equivalent to “block-respect”, called “Q-point of
βN ” was also studied and the non-existence of Q-points is also known
to be consistent [9].

To conclude this section let us present an example of a strongly
diagonal filter which is not category respecting. This example resembles
strongly the proof of the Theorem 4.3. Let D = {Dn}n∈N be a disjoint
partition of N into infinite subsets. For every sequence C = {Cn}n∈N
of finite subsets Cn ⊂ Dn introduce the set BC =

⋃
n∈N(Dn\Cn) . The

sets BC form a filter base. Denote the corresponding filter by Fd . A
set J ⊂ N is Fd -stationary if and only if there is an n ∈ N such
that |J ∩Dn| = ∞ . One can easily see that Fd is strongly diagonal.
To show that it is not category respecting consider the same system
of subsets (FA)A∈F of the same compact K as in the proof of the
Theorem 4.3. The only difference is that now in the definition of K
we don’t need to consider the case of finite Dn . These sets FA are
closed, they have empty interior, but their union contains all the K ,
which would be impossible if Fd was category respecting.

5. Weak sequential completeness theorem for filters

Definition 5.1. A filter F on N is said to be weak `1 complete (or in
abbreviated form WC1-filter) if for every F -convergent in the topology
σ(`∗∗1 , `∗1) bounded sequence xn ∈ `1 its weak* limit x ∈ `∗∗1 in fact
belongs to `1 .

It is known that every Banach space with the Schur property is
weakly sequentially complete. The next theorem together with the
Theorem 4.6 shows that the picture for filters is more colorful.

Theorem 5.2. An ultrafilter cannot be weak `1 complete.
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Proof. Let F be a (free as always) ultrafilter on N . Consider an
arbitrary f = (f1, f2, . . .) ∈ `∞ = `∗1 . Then for the canonical basis
(en) of `1 we have

lim
F

f(en) = lim
F

fn,

which shows that the sequence en weak* converge to the functional
limF on `∞ , which evidently does not belong to `1 . �

To show that a WC1-filter may have no Schur property (and even to
be without the simplified Schur property), let us recall some elements
of statistical convergence theory [4], [2].

A sequence xk in a topological space X is statistically convergent to
x if for every neighborhood U of x the set {k : xk 6∈ U} has natural
density 0, where the natural density of a subset A ⊂ N is defined to
be δ(A) := limn n−1|{k ≤ n : k ∈ A}| .

Denote Fs = {I ⊂ N : δ(N \ I) = 0} and remark that Fs is a
filter. As is easy to see that Fs -convergence and statistical convergence
coincide, and a set J is Fs -stationary provided δ(J) 6= 0 .

Recall that a scalar sequence xk is said to be strongly Cesaro-
summable if there is a scalar x such that

lim
n→∞

1

n

n∑
j=1

|x− xj| = 0.

It is known that a bounded scalar sequence is statistically convergent
if and only if it is strongly Cesaro-summable (for a general version of
this criterion see [1, Theorem 8]). Let us apply this fact.

Theorem 5.3. Fs is a WC1-filter but does not have the simplified
Schur property.

Proof. Consider the blocking of N into Dn = (2n−1, 2n+1] . Every set
J ⊂ N intersecting each of Dn by no more than one element, has zero
natural density and consequently cannot be Fs -stationary. Hence Fs

is not block-respecting and by the Theorem 2.6 Fs does not have the
simplified Schur property.

Let us show now the weak `1 completeness of Fs . Let xn ∈ `1

be a bounded sequence and let weak* Fs -limit of xn be equal to an
x∗∗ ∈ `∗∗1 . This means that for every f ∈ `∗1

lim
n→∞

1

n

n∑
j=1

|f(x∗∗ − xj)| = 0.

Hence the vectors 1
n

∑n
j=1 xj weak*-converge to x∗∗ as n → ∞ . By

the ordinary weak sequential completeness of `1 this means that x∗∗ ∈
`1 . �

Our next goal is to show that if one avoids ultrafilters in a reasonable
sense, then the same sufficient condition which we have for the Schur
property works for the WC1 as well.
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Definition 5.4. A filter F on N is said to be a paper filter (p-filter)
if all the traces of F on F -stationary subsets are not ultrafilters.

Theorem 5.5. If a p-filter F on N is diagonal and is block-respecting
then F is a WC1-filter.

Proof. Let xn ∈ `1 be a bounded sequence and let F -limit of xn in
the topology σ(`∗∗1 , `∗1) be equal to an x∗∗ ∈ `∗∗1 \ `1 . Consider the
standard projection P : `∗∗1 → `1 , which maps every element of `∗∗1
(i.e. a linear functional on `∞ ) into its restriction on c0 . Denote
x = Px∗∗ . Without loss of generality we may assume that x = 0 :
otherwise consider xn−x instead of xn . This assumption means that
xn coordinate-wise converge to 0 with respect to the filter F . Due
to the Lemma 3.3 there is a I ∈ F∗ , such that xn coordinate-wise
converge to 0 along I . Since F(I) is block-respecting (Remark 2.4),
we may apply Lemma 2.5 to get such a J ∈ F∗ J ⊂ I , that the
sequence xn , n ∈ J is equivalent to the canonical basis of `1 (here
we use also the boundedness of the sequence). Since F(J) is not an
ultrafilter we can decompose J into two disjoint F -stationary subsets
J1 and J2 . Consider a functional x∗ ∈ `∗1 which takes value 1 on all
xn , n ∈ J1 and is equal to −1 on every xn , n ∈ J2 . Then

1 = lim
F(J1)

x∗(xn) = x∗(x∗∗) = lim
F(J2)

x∗(xn) = −1.

This contradiction completes the proof. �

To proceed further let us introduce two operations: the sum and the
product of filters.

Definition 5.6. Let F1 , F2 be filters on N1 and N2 respectively.
Define F1 + F2 as the filter on N1 ∪ N2 consisting of those elements
A ⊂ N1 ∪N2 that A∩N1 ∈ F1 and A∩N2 ∈ F2 . The filter F1×F2

is defined on N1×N2 with base formed by the sets A1×A2 , A1 ∈ F1 ,
A2 ∈ F2 .

Definition 5.7. A filter F on N is said to have the double Schur
property if F × F is a Schur filter.

Theorem 5.8. Every filter F with the double Schur property is a
WC1-filter and a Schur filter at the same time.

Proof. Consider such a bounded sequence xn ∈ `1 that F -limit of xn

in the topology σ(`∗∗1 , `∗1) is equal to an x∗∗ ∈ `∗∗1 . Then the double
sequence xn− xm is weakly F ×F convergent to 0. According to the
double Schur property of F this implies that ‖xn− xm‖ →F×F 0 , i.e.
(thanks to the completeness of `1 ) there is an element x ∈ `1 such
that ‖xn − x‖ →F 0 . Evidently x∗∗ = x ∈ `1 . �
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6. Domination by Schur and WC1 filters. Open problems

Definition 6.1. A property P of filters (or corresponding class of
filters) is said to be quasi-increasing if for every F ∈ P all the filters
of the form F(J) for every J ∈ F∗ have the property P as well.

Remark 6.2. F(J) -convergence to 0 (in arbitrary fixed topology) of a
sequence xn is equivalent to F -convergence to 0 in the same topology
of the sequence xnχJ(n) . Consequently the properties defined only
through convergence to 0 (like Schur or double Schur properties) are
quasi-increasing.

Definition 6.3. A property P of filters is said to be decreasing if for
every F ∈ P all the filters dominated by F have the property P as
well.

Evidently WC1 filters form a decreasing class. So one can improve
the Theorem 5.8 as follows: every filter dominated by a filter with
the double Schur property is a WC1-filter. This is an improvement,
because of the following proposition:

Theorem 6.4. The Schur property, the double Schur property and
moreover every non-trivial quasi-increasing property P of filters are
not decreasing.

Proof. Let F1 ∈ P , F2 6∈ P be filters on N1 and N2 respectively.
Then F = F1 + F2 is a filter on N1 ∪ N2 which cannot have the
property P , because F(N2) 6∈ P . On the other hand F(N1) ∈ P but
F(N1) dominates F . �

On the other hand one can introduce a bit weaker but still reasonable
version of the Schur property, which is decreasing:

Definition 6.5. A filter F on N is said to be an almost Schur filter
(or is said to have the almost Schur property) if for every weakly F -
convergent to 0 sequence xn ∈ `1 , n ∈ N the norms of xn are not
separated from 0 (or in other words 0 is a cluster point for ‖xn‖ ,
n ∈ N ).

The Theorem 1.1 easily implies that a filter F on N has the Schur
property if and only if all the filters F(J) for every J ∈ F∗ are almost
Schur filter.

One can also introduce increasing properties:

Definition 6.6. A property P of filters is said to be increasing if for
every F ∈ P all the filters that dominate F have the property P as
well.

Evidently the negation of an increasing property is a decreasing one
and back.
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Definition 6.7. Let P be an increasing (decreasing) class of filters. A
class of filters P1 ⊂ P is said to be a basis for P if P is the smallest
increasing (decreasing) class, containing P1 .

The problem which looks interesting is to construct explicitly a class
of almost Schur filters, which forms a base for the class of all almost
Schur filters. The same question makes sense for the negation of prop-
erty to be almost Schur filter. Such a job has been done in [6] for
the class of those filters F , that weak F -convergence of a sequence
implies existence of a bounded subsequence.
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