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ABSTRACT. We study the Pettis integral for multi-functions F : Ω → cwk(X)
defined on a complete probability space (Ω, Σ, µ) with values into the family
cwk(X) of all convex weakly compact non-empty subsets of a separable Banach
space X . From the notion of Pettis integrability for such an F studied in the lit-
erature one readily infers that if we embed cwk(X) into `∞(BX∗) by means of
the mapping j : cwk(X) → `∞(BX∗) defined by j(C)(x∗) = sup(x∗(C)),
then j ◦ F is integrable with respect to a norming subset of B`∞(BX∗ )∗ . A
natural question arises: When is j ◦ F Pettis integrable? In this paper we an-
swer this question by proving that the Pettis integrability of any cwk(X)-valued
function F is equivalent to the Pettis integrability of j ◦ F if and only if X has
the Schur property that is shown to be equivalent to the fact that cwk(X) is
separable when endowed with the Hausdorff distance. We complete the paper
with some sufficient conditions (involving stability in Talagrand’s sense) that en-
sure the Pettis integrability of j ◦F for a given Pettis integrable cwk(X)-valued
function F .

1. INTRODUCTION

Since the pioneering papers by Aumann [2] and Debreu [5], several notions of
integral for multi-valued functions (also called multi-functions) in Banach spaces
have been developed. These notions have shown to be useful when modelling
some theories in areas like Optimal Control and Mathematical Economics. For a
detailed account on this subject we refer the reader to the monographs [4], [16]
and the survey [13]. The Pettis integral for multi-functions was first considered
by Castaing and Valadier [4, Chapter V, §4] and has been widely studied in recent
years, see [1, 3, 6, 7, 10, 14, 18, 19].

Throughout this paper (Ω,Σ, µ) is a complete probability space, X a separable
Banach space and cwk(X) the family of all convex weakly compact non-empty
subsets of X . Given C ∈ cwk(X) and x∗ ∈ X∗ we write

δ∗(x∗, C) := sup{x∗(x) : x ∈ C}.
A multi-function F : Ω → cwk(X) is said to be Pettis integrable if

(i) For each x∗ ∈ X∗, the function δ∗(x∗, F ) : Ω → R given by

δ∗(x∗, F )(ω) = δ∗(x∗, F (ω))

is µ-integrable.
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(ii) For each A ∈ Σ, there is
∫
A F dµ ∈ cwk(X) such that

δ∗(x∗,
∫

A
F dµ) =

∫
A
δ∗(x∗, F ) dµ for every x∗ ∈ X∗.

It is worth mentioning that the measurability of δ∗(x∗, F ) for every x∗ ∈ X∗ im-
plies that such an F is Effros measurable, cf. [4, Theorem III.37], and therefore
F admits strongly measurable selectors, cf. [4, Theorem III.6]. The following
characterization shows the role played by these selectors in the multi-valued Pettis
integral theory. The implication (iii)⇒(i) is essentially due to Castaing and Val-
adier [4, Chapter V, §4], whereas the other ones have been recently proved by El
Amri and Hess [10] and Ziat [18] (see [19] for a corrected proof of (i)⇒(ii)).

Theorem A. Let (Ω,Σ, µ) be a complete probability space,X a separable Banach
space and F : Ω → cwk(X) a multi-function. The following conditions are
equivalent:

(i) F is Pettis integrable.
(ii) The family WF = {δ∗(x∗, F ) : x∗ ∈ BX∗} is uniformly integrable.

(iii) The familyWF is made up of measurable functions and any strongly mea-
surable selector of F is Pettis integrable.

In this case, for each A ∈ Σ the Pettis integral
∫
A F dµ coincides with the set of

integrals over A of all Pettis integrable selectors of F .

Recall that cwk(X), equipped with the Hausdorff metric h, is a complete met-
ric space that can be isometrically embedded into the Banach space `∞(BX∗) by
means of the mapping

j : cwk(X) → `∞(BX∗), j(C)(x∗) := δ∗(x∗, C),

see e.g. [4, Chapter II]. Thus any cwk(X)-valued function F can be looked at as
a single-valued function j ◦ F taking values in `∞(BX∗). Some stronger notions
of integral for a multi-function F : Ω → cwk(X), like the Debreu and Birkhoff
integrals, see respectively [5] and [3], can be characterized in terms of the integra-
bility properties of the composition j ◦ F : Ω → `∞(BX∗). To the best of our
knowledge it has been [3] the first paper where the relationship between the Pettis
integrability of F and the Pettis integrability of j ◦F has been studied, namely the
first and third named authors proved in [3, Proposition 3.5] the following results:

(i) if j ◦ F is Pettis integrable then F is Pettis integrable and j(
∫
A F dµ) is

the Pettis integral of j ◦ F over A for every A ∈ Σ;
(ii) the equivalence between F being Pettis integrable and that of j ◦ F holds

true whenever F has essentially h-separable range (that is, there is E ∈ Σ
with µ(Ω \ E) = 0 such that F (E) is h-separable).

Since the separability of X implies the separability for the Hausdorff distance h
of the family ck(X) of all convex norm compact non-empty subsets of X , cf. [4,
Theorem II.8], statement (ii) implies, in particular, that when F (Ω) ⊂ ck(X) then
F is Pettis integrable if and only if j ◦ F is Pettis integrable too. We note that this
last equivalence has been recently rediscovered in [7, Lemma 1].

With this paper we aim a double target: (a) to characterize those Banach spaces
for which the Pettis integrability of any cwk(X)-valued function F is equivalent
to the Pettis integrability of j ◦ F ; (b) to provide sufficient conditions ensuring the
Pettis integrability of j ◦F for a standing alone Pettis integrable multi-function F .
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Being more precise, in Section 2 we show that, in general, j ◦ F might be
non Pettis integrable when F is. In fact, we prove that X has the Schur property
(i.e. weakly convergent sequences are norm convergent) if and only if j ◦ F is
Pettis integrable for every cwk(X)-valued Pettis integrable F , the latter also being
equivalent to the fact that (cwk(X), h) is separable, see Theorem 2.1. Our proof
of Theorem 2.1 easily yields that a convex weakly compact set K ⊂ X is norm
compact if and only if j ◦ F is Pettis integrable for every Pettis integrable multi-
function F taking values in {C ∈ cwk(X) : C ⊂ K}, see Proposition 2.3.

In Section 3 we exhibit some sufficient conditions for a Pettis integrable multi-
function F : Ω → cwk(X) that ensure the Pettis integrability of j ◦ F , beyond
the essential h-separability of the range of F . Theorem 3.3 shows that j ◦ F is
Pettis integrable when every countable subset of WF = {δ∗(x∗, F ) : x∗ ∈ BX∗}
is stable in Talagrand’s sense, see Section 3 for the definition. In particular, under
Martin’s Axiom and dealing with a perfect probability µ, j ◦ F is Pettis integrable
whenever it is scalarly measurable, see Corollary 3.6.

A bit of terminology: our unexplained terminology can be found in our standard
references for multi-valued functions [4, 16] and for vector integration [9, 17]. All
vector spaces here are assumed to be real. Given a subset S of a vector space, we
write co(S), aco(S) and span(S) to denote, respectively, the convex, absolutely
convex and linear hull of S. Let Y be a Banach space. As usual, BY is the closed
unit ball of Y and Y ∗ stands for the topological dual of Y . Given y∗ ∈ Y ∗ and
y ∈ Y , we write 〈y∗, y〉 and y∗(y) to denote the evaluation of y∗ at y. A set
B ⊂ BY ∗ is said to be norming if ‖y‖ = sup{|y∗(y)| : y∗ ∈ B} for every
y ∈ Y . For the complete probability space (Ω,Σ, µ), a family H of real-valued µ-
integrable functions defined on Ω is said to be uniformly integrable if it is bounded
for ‖ · ‖1 and for each ε > 0 there is δ > 0 such that suph∈H

∫
E |h| dµ ≤ ε

whenever µ(E) ≤ δ. A function f : Ω → Y is said to be scalarly measurable if
the composition 〈y∗, f〉 : Ω → R, given by 〈y∗, f〉(ω) = 〈y∗, f(ω)〉, is measurable
for every y∗ ∈ Y ∗. Recall that f is said to be Pettis integrable if

(i) 〈y∗, f〉 is µ-integrable for every y∗ ∈ Y ∗.
(ii) For each A ∈ Σ, there is νf (A) ∈ Y such that

〈y∗, νf (A)〉 =
∫

A
〈y∗, f〉 dµ for every y∗ ∈ Y ∗.

In this case, the mapping νf : Σ → Y is a countably additive measure. We note
that a single-valued function f : Ω → X is Pettis integrable if, and only if, the set-
valued function F : Ω → cwk(X) given by F (ω) = {f(ω)} is Pettis integrable.

2. A CHARACTERIZATION OF THE SCHUR PROPERTY

If the Banach space X has the Schur property, the Eberlein-Smulyan theo-
rem [8, p. 18] implies that every weakly compact set in X is norm compact, hence
cwk(X) = ck(X). Thus if X is separable and has the Schur property we know
that (cwk(X), h) = (ck(X), h) is separable, see [4, Theorem II.8], and conse-
quently if F : Ω → cwk(X) is Pettis integrable then j ◦ F is Pettis integrable by
[3, Proposition 3.5]. In this section we prove that the converse also holds, that is,
the Schur property of X is characterized by the fact that j ◦ F is Pettis integrable
for each Pettis integrable cwk(X)-valued function F .
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Theorem 2.1. For a separable Banach space X the following statements are
equivalent:

(i) X has the Schur property.
(ii) (cwk(X), h) is separable.

(iii) For any complete probability space (Ω,Σ, µ) and any Pettis integrable
multi-functionF : Ω → cwk(X) the composition j◦F is Pettis integrable.

(iv) For any Pettis integrable multi-function F : [0, 1] → cwk(X) the compo-
sition j ◦ F is Pettis integrable .

(v) For any h-bounded Pettis integrable multi-function F : [0, 1] → cwk(X)
the composition j ◦ F is Pettis integrable.

Proof. The comments just before the theorem thoroughly explain the implications
(i)⇒(ii)⇒(iii). The implications (iii)⇒(iv) and (iv)⇒(v) are obvious.

To finish we prove the implication (v)⇒(i) by contradiction: we will show that
if X fails the Schur property, then there is an h-bounded Pettis integrable multi-
function F : [0, 1] → cwk(X) such that j◦F is not scalarly measurable (hence not
Pettis integrable). Recall (cf. [11, 254K]) that [0, 1], equipped with the Lebesgue
measure on the σ-algebra of all Lebesgue measurable sets, is measure space iso-
morphic to the complete probability space ({0, 1}N,Σ, µ) obtained as the com-
pletion of the usual product probability measure on {0, 1}N. Therefore, for our
purposes it suffices to work with ({0, 1}N,Σ, µ). We write πn : {0, 1}N → R to
denote the n-th coordinate projection.

Suppose that X fails the Schur property. Then there is a weakly null sequence
(xn) in X such that ‖xn‖ = 1 for every n ∈ N. According to the Bessaga-
Pelczynski selection principle (cf. [8, p. 42]), by passing to a further subsequence
we can and do assume that (xn) is a basic sequence, i.e. it is a Schauder basis
of Y := span{xn : n ∈ N}. Since the set {xn : n ∈ N} is weakly relatively
compact, the Krein-Smulyan theorem (cf. [9, Theorem 11, p. 51]) allows us to
define the h-bounded multi-function F : {0, 1}N → cwk(X) by

F (ω) := co{πn(ω)xn : n ∈ N}.
According to Theorem A, in order to prove that F is Pettis integrable it suffices to
show that the family WF is uniformly integrable. An easy computation yields that

δ∗(x∗, F )(ω) = δ∗(x∗, F (ω)) =

= sup
{
x∗(x) : x ∈ co{πn(ω)xn : n ∈ N}

}
= sup

n∈N
πn(ω)x∗(xn)(1)

for every ω ∈ {0, 1}N and x∗ ∈ X∗. Observe that since each πn is measurable
δ∗(x∗, F ) is measurable too. On the other hand, we have |δ∗(x∗, F )(ω)| ≤ 1 for
any ω ∈ {0, 1}N and x∗ ∈ BX∗ . Therefore WF is uniformly bounded and made
up of measurable functions, hence uniformly integrable: Theorem A applies now
to tell us that F is Pettis integrable.

We claim now that the composition j ◦ F : Ω → `∞(BX∗) is not scalarly
measurable. Indeed, for each n ∈ N take y∗n ∈ Y ∗ the coefficient functional given
by y∗n :

∑
m amxm → an. Since (xn) is a normalized Schauder basis of Y , there

is M > 0 such that ‖y∗n‖ ≤ M for every n ∈ N. For each n ∈ N use the Hahn-
Banach theorem and fix x∗n ∈ X∗ such that y∗n = x∗n|Y and ‖y∗n‖ = ‖x∗n‖. Define
z∗n := x∗n/M ∈ BX∗ for every n ∈ N. As usual, we identify {0, 1}N with P(N)
(the power set of N) by means of the bijection ψ : {0, 1}N → P(N) given by



PETTIS INTEGRAL FOR MULTI-VALUED FUNCTIONS 5

ψ(ω) := {n ∈ N : πn(ω) = 1}. Fix a free ultrafilter U ⊂ P(N). It is known that
ψ−1(U) ⊂ {0, 1}N is not measurable (cf. [17, 13-1-1]). Define ξ ∈ `∞(BX∗)∗ by

ξ(h) := U − lim
m
h(z∗m), for h ∈ `∞(BX∗),

where the symbol “U − limm” stands for the limit along the ultrafilter U . Then
the composition 〈ξ, j ◦ F 〉 is not measurable, because for each ω ∈ {0, 1}N the
equality (1) gives us

〈ξ, j ◦ F 〉(ω)

= U − lim
m
δ∗(z∗m, F )(ω) = U − lim

m

πm(ω)
M

=

{
1
M if ω ∈ ψ−1(U);
0 if ω 6∈ ψ−1(U).

Therefore, j◦F is not scalarly measurable, as claimed and the proof of the theorem
is over. �

Remark 2.2. We notice that in fact the proof of Theorem 2.1 shows that conditions
(i)–(v) are equivalent to the following one:

(vi) For any h-bounded Pettis integrable multi-function F : [0, 1] → cwk(X)
the composition j ◦ F is scalarly measurable.

In Corollary 3.6 we will see that, at least under Martin’s Axiom, given a Pettis
integrable multi-function F : [0, 1] → cwk(X), the scalar measurability of j ◦ F
is sufficient to ensure that j ◦ F is Pettis integrable.

Similar ideas to those in the proof of Theorem 2.1 allow us to prove:

Proposition 2.3. Let X be a separable Banach space and K ∈ cwk(X). The
following statements are equivalent:

(i) K is norm compact.
(ii) The family cwk(K) := {C ∈ cwk(X) : C ⊂ K} is h-separable.

(iii) For any complete probability space (Ω,Σ, µ) and any Pettis integrable
multi-function F : Ω → cwk(X) such that F (Ω) ⊂ cwk(K), the compo-
sition j ◦ F is Pettis integrable.

(iv) For any Pettis integrable multi-function F : [0, 1] → cwk(X) such that
F (Ω) ⊂ cwk(K), the composition j ◦ F is Pettis integrable.

(v) For any Pettis integrable multi-function F : [0, 1] → cwk(X) such that
F (Ω) ⊂ cwk(K), the composition j ◦ F is scalarly measurable.

Proof. The implication (i)⇒(ii) is as follows: the norm compactness of K says
that cwk(K) ⊂ ck(X). Since ck(X) is h-separable, the same holds for cwk(K).

Implication (ii)⇒(iii) again follows from [3, Proposition 3.5].
The implications (iii)⇒(iv)⇒(v) are immediate.
To finish we prove that (v)⇒(i). Suppose that K is not norm compact. We

shall construct a Pettis integrable multi-function F : {0, 1}N → cwk(X) such that
F (Ω) ⊂ cwk(K) and j ◦ F is not scalarly measurable. Since K is weakly but not
norm compact, there is a sequence (yn) in K converging weakly to some y ∈ K
such that infn∈N ‖yn − y‖ > 0. Define xn := yn − y ∈ X for every n ∈ N.
Then (xn) is weakly null and, by the Bessaga-Pelczynski selection principle (cf.
[8, p. 42]), we can assume further that (xn) is a basic sequence. Then, as in the
proof of Theorem 2.1, the multi-function

G : {0, 1}N → cwk(X), G(ω) := co{πn(ω)xn : n ∈ N},
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is Pettis integrable but j ◦ G is not scalarly measurable. Now it is not difficult
to check that the multi-function F : {0, 1}N → cwk(X) defined by F (ω) :=
G(ω) + y satisfies the required properties. �

3. STABILITY AND THE PETTIS INTEGRAL FOR MULTI-FUNCTIONS

We begin this section by recalling the notion of stable family of real-valued func-
tions and its relationship with the Pettis integral theory. For detailed information
on this subject we refer the reader to [17] and [12, Chapter 46].

A family H ⊂ RΩ – (Ω,Σ, µ) complete probability space – is said to be stable
(in Talagrand’s sense) if, for each A ∈ Σ with µ(A) > 0 and each pair of real
numbers α < β, there are k, l ∈ N such that

µ∗k+l(Dk,l(H, A, α, β)) < µ(A)k+l,

where µk+l denotes the product of k + l copies of µ and

Dk,l(H, A, α, β) :=
⋃

h∈H
{(ωi)k+l

i=1 ∈ A
k+l : h(ωi) < α for all 1 ≤ i ≤ k,

h(ωi) > β for all k + 1 ≤ i ≤ k + l}.

If H is stable then it is made up of measurable functions and HTp(Ω) is also sta-
ble, where Tp(Ω) stands for the pointwise convergence topology (i.e. the product
topology) on RΩ, [17, Section 9-1].

Stability and Pettis integration are related as follows. Given a Banach space Y ,
a norming set B ⊂ BY ∗ and a function f : Ω → Y , we can consider the family

Zf,B = {〈y∗, f〉 : y∗ ∈ B} ⊂ RΩ.

Notice that in the particular case when B = BY ∗ the set Zf := Zf,BY ∗ is Tp(Ω)-
compact after Alaoglu’s theorem. A well known result of Talagrand states that f is
Pettis integrable provided that it is properly measurable, i.e. Zf is stable, and Zf

is uniformly integrable, [17, Theorem 6-1-2].

Lemma 3.1. Let (Ω,Σ, µ) be a complete probability space and Y a Banach space.
Let f : Ω → Y be a function such that:

(i) There is a countable partition (An) of Ω in Σ such that the restriction
f |An is Pettis integrable for every n ∈ N.

(ii) There is a norming set B ⊂ BY ∗ such that the family Zf,B is uniformly
integrable.

Then f is Pettis integrable.

Proof. We begin by proving that for each E ∈ Σ the series
∑

n νf |An
(E ∩ An)

is unconditionally convergent. Indeed, observe that for every finite set Q ⊂ N we
have∥∥∥∑

n∈Q

νf |An
(E ∩An)

∥∥∥ =

= sup
y∗∈B

∣∣∣∑
n∈Q

〈y∗, νf |An
(E ∩An)〉

∣∣∣ = sup
y∗∈B

∣∣∣∫
E∩(

S
n∈Q An)

〈y∗, f〉 dµ
∣∣∣.

The unconditional convergence of
∑

n νf |An
(E ∩ An) now follows from the uni-

form integrability of the family Zf,B .
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We next show that f is Pettis integrable and that for every E ∈ Σ we have
νf (E) =

∑
n νf |An

(E ∩ An). To this end, observe first that f is scalarly mea-
surable. We check now that f is scalarly integrable (i.e. Dunford integrable). For
fixed y∗0 ∈ BY ∗ and every n ∈ N we have

1
2

( ∫
Sn

k=1 Ak

|〈y∗0, f〉| dµ
)
≤

≤ sup
E∈Σ

E⊂
Sn

k=1 Ak

∣∣∣∫
E
〈y∗0, f〉 dµ

∣∣∣ = sup
E∈Σ

∣∣∣ n∑
k=1

∫
E∩Ak

〈y∗0, f〉 dµ
∣∣∣ ≤

≤ sup
E∈Σ

∥∥∥ n∑
k=1

νf |Ak
(E ∩Ak)

∥∥∥ = sup
E∈Σ

sup
y∗∈B

∣∣∣ n∑
k=1

∫
E∩Ak

〈y∗, f〉 dµ
∣∣∣ ≤

≤ sup
y∗∈B

sup
E∈Σ

∫
E
|〈y∗, f〉| dµ ≤ sup

y∗∈B

∫
Ω
|〈y∗, f〉| dµ <∞.

Therefore f is scalarly integrable. Finally, notice that∫
E
〈y∗, f〉 dµ =

∑
n

〈y∗, νf |An
(E ∩An)〉 = 〈y∗,

∑
n

νf |An
(E ∩An)〉

for every y∗ ∈ Y ∗ and every E ∈ Σ. The proof is complete. �

Lemma 3.2. Let (Ω,Σ, µ) be a complete probability space and Y a Banach space.
Let f : Ω → Y be a function such that:

(i) There is a countable partition (An) of Ω in Σ such that the restriction
f |An is bounded for every n ∈ N.

(ii) There is a norming set B ⊂ BY ∗ such that the family Zf,B is uniformly
integrable and stable.

Then f is Pettis integrable and properly measurable.

Proof. Fix n ∈ N. Since the family Zf |An ,B is uniformly bounded and sta-
ble, a result of Talagrand [17, Theorem 11-2-1] (cf. [12, 465N]) ensures that

aco(Zf |An ,B) is also stable and, therefore, the same holds for aco(Zf |An ,B)
Tp(Ω)

=

Zf |An ,aco(B)
Tp(Ω). On the other hand, bearing in mind thatB is norming, the Hahn-

Banach theorem yields the equality BY ∗ = aco(B)
w∗

, hence Zf |An ,aco(B)
Tp(Ω) =

Zf |An
. Since Zf |An

is stable and f |An is bounded, we can apply [17, Theorem
6-1-2] to conclude that f |An is Pettis integrable.

The Pettis integrability of f now follows from Lemma 3.1. Finally, bearing in
mind that Ω =

⋃
nAn and that Zf |An

is stable for every n ∈ N, it is easy to check
that Zf is stable, as required. �

We are now ready to prove the main result of this section, Theorem 3.3 be-
low. We first need to introduce some terminology. Given a Banach space X , we
write τM to denote the Mackey topology on X∗, that is, the topology of uniform
convergence on weakly compact subsets of X . Recall that, by the Mackey-Arens
theorem, τM is the finest locally convex topology on X∗ whose topological dual
is X , hence Cw∗ = C

τM for every convex set C ⊂ X∗ (cf. [15, Chapter 8]).

Theorem 3.3. Let (Ω,Σ, µ) be a complete probability space and X a separable
Banach space. Let F : Ω → cwk(X) be a Pettis integrable multi-function such
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that every countable subset of WF is stable. Then j ◦ F is Pettis integrable and
properly measurable.

Proof. Notice first that j : cwk(X) → `∞(BX∗) actually takes its values in the
Banach space Y := Cb(BX∗ , τM ) of all real-valued, bounded and τM -continuous
functions on BX∗ , equipped with the supremum norm. Since X is separable, BX∗

contains a countable w∗-dense subset C. In view of the comments just before the
theorem, we can assume without loss of generality that C is even τM -dense. For
each x∗ ∈ BX∗ , define ex∗ ∈ B`∞(BX∗ )∗ by 〈ex∗ , h〉 := h(x∗). Then the set

B := {ex∗ |Y : x∗ ∈ C} ⊂ BY ∗

is norming and ‖(j ◦ F )(ω)‖∞ = supx∗∈C |δ∗(x∗, F )(ω)| for every ω ∈ Ω. Since
the family WF is made up of measurable functions, we conclude that the mapping
ω 7→ ‖(j ◦ F )(ω)‖∞ is measurable. In particular, there is a countable partition
(An) of Ω in Σ such that the restriction j ◦ F |An is bounded for every n ∈ N. On
the other hand, the family

Zj◦F,B = {δ∗(x∗, F ) : x∗ ∈ C}

is uniformly integrable after Theorem A and stable since C is countable. It follows
from Lemma 3.2 that j ◦F is Pettis integrable and properly measurable. The proof
of the theorem is complete. �

Remark 3.4. Our Theorem 3.3 generalizes the fact that j ◦ F is Pettis integrable
for any Pettis integrable multi-function F with essentially h-separable range, [3,
Proposition 3.5]. Indeed, for such an F the single-valued function j ◦F has essen-
tially separable range and 〈ex∗ , j ◦ F 〉 is measurable for every x∗ ∈ BX∗ . Since
{ex∗ : x∗ ∈ BX∗} ⊂ B`∞(BX∗ )∗ is norming, an appeal to Pettis’ measurability
theorem (cf. [9, Corollary 4, p. 42]) ensures that j ◦ F is strongly measurable.
It follows that j ◦ F is properly measurable (this can be deduced easily from [9,
Corollary 3, p. 42]) and, in particular, the family WF is stable.

Remark 3.5. We also mention that there are Pettis integrable multi-functions F
for which the family WF is stable but the range of F is not essentially h-separable,
see [3, Example 3.10].

Recall that the complete probability space (Ω,Σ, µ) is said to be perfect (cf.
[17, 1-3-1]) if for every measurable function h : Ω → R and every E ⊂ R with
f−1(E) ∈ Σ, there is a Borel set B ⊂ E such that µ(f−1(B)) = µ(f−1(E)). For
instance, every Radon topological probability space is perfect (cf. [17, 1-3-2]). Per-
fect probability spaces play a relevant role in the study of pointwise compact sets of
measurable functions, see [17]. Under Martin’s Axiom (or even weaker axioms),
every pointwise compact separable family of real-valued measurable functions de-
fined on a perfect complete probability space is stable, see [17, Section 9-3]. As a
consequence we obtain the following result.

Corollary 3.6 (Martin’s Axiom). Let (Ω,Σ, µ) be a perfect complete probability
space andX a separable Banach space. Let F : Ω → cwk(X) be a multi-function.
The following conditions are equivalent:

(i) F is Pettis integrable and j ◦ F is scalarly measurable.
(ii) j ◦ F is Pettis integrable.
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Proof. We only have to give a proof for the implication (i)⇒(ii). Notice that, for
each countable set C ⊂ BX∗ , the family

{δ∗(x∗, F ) : x∗ ∈ C}Tp(Ω) ⊂ Zj◦F

is Tp(Ω)-compact separable and is made up of measurable functions, therefore it
is stable. The result now follows from Theorem 3.3. �
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