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Abstract. Pfister (1976) and Cascales and Orihuela (1986) proved that
precompact sets in (DF )- and (LM)-spaces have countable weight; i.e.,
are metrizable. Improvements by Valdivia (1982), Cascales and Ori-
huela (1987) and Ka̧kol and Saxon (preprint) have varying methods of
proof. For these and other improvements a refined method of upper
semi-continuous compact-valued maps applied to uniform spaces will
suffice. At the same time, this method allows us to dramatically improve
Kaplansky’s theorem, that the weak topology of metrizable spaces has
countable tightness, extending it to include all (LM)-spaces and all qua-
sibarrelled (DF )-spaces, both in the weak and original topologies. One
key is showing that for a large class G including all (DF )- and (LM)-
spaces, countable tightness of the weak topology of E in G is equivalent
to realcompactness of the weak∗ topology of the dual of E.

1. Introduction

Recall that the weight w(X) of a topological space X is the minimal
cardinality of a basis for the topology of X. For a set B we denote by |B| its
cardinal. The tightness t(X) of X is the smallest infinite cardinal number
m such that for any set A of X and any point x ∈ A (the closure in X)
there is a set B ⊂ A for which |B| ≤ m and x ∈ B. The notion of countable
tightness arises as a natural generalization of the Fréchet-Urysohn notion.
X is said to be Fréchet-Urysohn if for every set A ⊂ X and every x ∈ A
there is a sequence in A which converges to x.

In [3] Cascales and Orihuela showed (answering an (LF )-space question
of Floret [11]) that w(K) ≤ ℵ0 for any precompact set K in an (LM)-space,
i.e., precompact subsets are metrizable in inductive limits of increasing se-
quences of metrizable locally convex spaces (LCS). They continued this line
of research in [4] and introduced a large class G of LCS with good stability
properties containing (LM)-spaces and dual metric spaces which, them-
selves, respectively generalize the intensely studied (LF )- and (DF )-spaces.
Pfister and Valdivia, respectively, had earlier demonstrated countable weight
for precompact sets in (DF )- and dual metric spaces. Cascales and Orihuela
[4] unified and extended these result by showing that w(K) ≤ ℵ0 for every
precompact set K ⊂ E whenever E ∈ G. In particular, E is angelic, and
they proved that E with its weak topology is also angelic.

We study first the weight of precompact subsets in uniform spaces with
decreasing bases for their uniformity, indexed in the product of a countable
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family of infinite directed sets, see Theorem 3.1. The proof of this result
uses arguments similar to those in Theorem 1 of [4], which is extended
here, and technically relies heavily on pure topological results included in
Proposition 2.1 and Theorem 2.3 below (proved in section 2 for the sake
of completeness). Theorem 3.1 applies to many LCS and extends, among
others, the main result of [3] by showing [Theorem 4.2(ii)] that if E is the
inductive limit of a sequence (En) of LCS in Gm, where m is an infinite
cardinal number and Gm denotes the class of LCS E with character χ(E) ≤
m, then w(K) ≤ m for any precompact set K ⊂ E. In particular w(K) ≤ ℵ0

for any precompact set K in an (LM)-space.
More topological than Ka̧kol and Saxon’s proof [13], the approach to

Theorem 4.2(ii) via Theorem 3.1 leads to entirely new results on countable
tightness of LCS. Although among (LM)-spaces only the metrizable ones are
Fréchet-Urysohn, cf. [12], it turns out that t(E) ≤ ℵ0 for every (LM)-space
E. This is a consequence of Theorem 4.2(i): If E is the inductive limit of at
most m locally convex spaces in Gm, then t(E) ≤ m and t(E, σ(E,E′)) ≤ m.
For a space E ∈ G we prove that [(E, σ(E,E′)) has countable tightness]
⇔ [(E′, σ(E′, E)) is realcompact] ⇐ [E has countable tightness], see Theo-
rem 4.6 and Proposition 4.7. Consequently, there exist (DF )-spaces which
do not have countable tightness. In fact, we provide examples of (DF )-
spaces which are very nearly barrelled (are Mackey and ℵ0-barrelled) and
yet have uncountable tightness. However, all quasibarrelled spaces in G have
countable tightness, see Theorem 4.8, proving yet again countable tightness
for (LM)-spaces E under both the original and weak topologies. When E
is metrizable we have Kaplansky’s theorem [14, §24.1.6] as a corollary. At
the end of the paper we pose problems for future study.

Our notation and terminology are standard and we take [10, 14, 15] as
our basic reference texts for topology and topological vector spaces. E′ and
E∗ denote the topological and algebraic duals of a LCS E, respectively.
All topological spaces X are assumed to be Tychonoff, i.e. T1 completely
regular spaces. The character of a point x in X is defined (and denoted by
χ(x,X)) as the smallest cardinal number of a basis of neighborhoods of x.
Then χ(X) = sup {χ(x,X) : x ∈ X} denotes the character of X. By the
density d(X) we mean the minimal cardinality of a dense subset of X. The
Lindelöf number l(X) of X is the smallest infinite cardinal number m such
that every open cover of X has a subcover of cardinality ≤ m. By C(X)
we denote the space of continuous real functions on the topological space
X; Cp(X) denotes the space C(X) endowed with the topology of pointwise
convergence on X. It is known that supn l(Xn) = t(Cp(X)), see [1, Theorem
II.1.1]. For a compact and Hausdorff space K, the sup-norm ‖ ‖∞ of C(K)
is defined by ‖f‖∞ := sup{|f(x)| : x ∈ K}, for every f ∈ C(K). Then, see
[1],

w(K) = d(C(K), ‖ ‖∞) = d(Cp(K)).

If A is a subset in a vector space E (real or complex), Γ(A) denotes its
absolutely convex hull.
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2. Results on set-valued upper semi-continuous maps

The next two results, Proposition 2.1 and Theorem 2.3, will play a crucial
role when proving our main results in this paper: Theorems 3.1, 4.2, 4.6
and 4.8. Proposition 2.1 is a useful observation and Theorem 2.3 is a more
elaborated result based upon ideas in [2, 6]. Recall that a map ψ from a
topological space X to the power set 2Y of a topological space Y is upper
semi-continuous if for each x ∈ X and each open set G of Y containing ψ(x),
there is an open neighborhood U of x in X such that ψ(U) ⊂ G.

Proposition 2.1. Let X and Y be topological spaces and let ψ : X → 2Y

be an upper semi-continuous compact-valued map such that the set Y =⋃
{ψ(x) : x ∈ X}. Assume that w(X) is infinite. Then,

(i) the Lindelöf number l(Y n) ≤ w(X), for every n = 1, 2, . . . ;
(ii) if Y is moreover assumed to be metric then d(Y ) ≤ w(X).

Proof. To prove (i) we observe first that for every n = 1, 2, . . . the multi-
valued map ψn : Xn → 2Y n

given by

ψn(x1, x2, . . . , xn) := ψ(x1)× ψ(x2)× · · · × ψ(xn)

is compact-valued, upper semi-continuous and

Y n =
⋃
{ψn(x1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ Xn}.

Since w(X) is infinite we have that w(Xn) = w(X) and therefore we only
need to prove (i) for n = 1. Take (Gi)i∈I any open cover of Y . For each
x ∈ X the compact set ψ(x) is covered by the family (Gi)i∈I and therefore
we can choose a finite subset I(x) of I such that

ψ(x) ⊂
⋃

i∈I(x)

Gi.

By upper semi-continuity, for each x in X we can take an open set Ox of X
such that x ∈ Ox and

ψ(Ox) ⊂
⋃

i∈I(x)

Gi.

The family (Ox)x∈X is an open cover of X and therefore there is a set F ⊂ X
such that |F | ≤ w(X) and X =

⋃
x∈F Ox, see [10, Theorem 1.1.14]. Then

Y = ψ(X) =
⋃
x∈F

ψ(Ox) =
⋃
x∈F

⋃
i∈I(x)

Gi.

Hence (Gi)i∈I has a subcover of at most w(X) elements.
Now we consider (ii). Assume Y is a metric space, and for every n ∈ N

choose Fn ⊂ Y a maximal set of points the distance between any two of
which is at least 1/n. It is not difficult to check that Fn is closed, each
x ∈ X has a neighborhood U such that ψ(U) ∩ Fn is finite, and therefore
|Fn| ≤ w(X). It is then quite easy to see that F =

⋃∞
n=1 Fn is dense in Y

and thus we obtain
d(Y ) ≤ w(X)

which finishes the proof (see also [10, Theorem 4.1.15]).
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Corollary 2.2. Let X and Y be topological spaces and let ψ : X → 2Y be an
upper semi-continuous compact-valued map such that Y = ∪{ψ(x) : x ∈ X}.
Assume that w(X) is infinite. If Y0 ⊂ Y is a closed subspace then the
Lindelöf number l(Y n

0 ) ≤ w(X), for every n = 1, 2, . . . .

Proof. Since Y n
0 is closed in Y n for every n = 1, 2, . . . we have that l(Y n

0 ) ≤
l(Y n), and then we apply the last result.

A subset A of a topological space Y is said to be relatively countably
compact if every sequence (yn)n in A has a cluster point in Y ; if the cluster
point can be taken in A then we say that A is countably compact.

Theorem 2.3. Let X be a first-countable topological space, Y a topological
space in which the relatively countably compact subsets are relatively compact
and let φ : X → 2Y be a set-valued map satisfying the property
(1)⋃

n∈N
φ(xn) is relatively compact for each convergent sequence (xn)n in X.

If for each x in X we define

(2) ψ(x) :=
⋂
{φ(V ) : V neighborhood of x in X},

then the map so defined ψ : X → 2Y is upper semi-continuous, compact-
valued and satisfies φ(x) ⊂ ψ(x) for every x in X.

Proof. Given x in X we define

C(x) := {y ∈ Y : there is xn → x in X, for every n ∈ N there is

yn ∈ φ(xn) and y is cluster point of (yn)n}.

Fix V x
1 ⊃ V x

2 ⊃ · · · ⊃ V x
n ⊃ . . . a basis of open neighborhoods of x in

the space X. We will establish now several claims leading eventually to the
proof.

CLAIM 1. C(x) is countably compact and thus C(x) is compact.
We have to prove that every sequence in C(x) has a cluster point in C(x).
Take (yj)j in C(x) and let xj

n → x for every j ∈ N and let yj
n ∈ φ(xj

n) such
that yj is a cluster point of (yj

n). There are natural numbers nj
i , i, j ∈ N

such that
1 ≤ nj

1 < nj
2 < · · · < nj

i < · · · , j = 1, 2, . . .
and

xj
n ∈ V x

k whenever nj
k ≤ n < nj

k+1, k = 1, 2, . . . , j = 1, 2, . . .

The sequence (xn)n given by

(3) {x1
1, x

1
2, . . . , x

1
n1

2−1, x
1
n1

2
, . . . , x1

n1
3−1, x

2
n2

2
, . . . , x2

n2
3−1, x

1
n1

3
, . . . , x1

n1
4−1,

, x2
n2

3
, . . . , x2

n2
4−1, x

3
n3

3
, . . . , x3

n3
4−1, x

1
n1

4
, . . . }

clearly converges to x and

yj ∈
⋃
n∈N

φ(xn), for every j = 1, 2, . . .
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Property (1) implies that the sequence (yj)j has a cluster point y in Y . The
point y actually belongs to C(x) because if we consider the sequence (zn)n

corresponding to (3) but defined by

{y1
1, y

1
2, . . . , y

1
n1

2−1, y
1
n1

2
, . . . , y1

n1
3−1, y

2
n2

2
, . . . , y2

n2
3−1, y

1
n1

3
, . . . , y1

n1
4−1,

, y2
n2

3
, . . . , y2

n2
4−1, y

3
n3

3
, . . . , y3

n3
4−1, y

1
n1

4
, . . . }

then zn ∈ φ(xn) and it is easy to see that y is a cluster point of (zn)n and
thus the claim is proved.

CLAIM 2. If G is a open set in Y such that C(x) ⊂ G, then there is an
open neighborhood V of x such that φ(V ) ⊂ G.
Assume that the claim is not true. Then for every n ∈ N there is xn ∈ V x

n

such that φ(xn) 6⊂ G and consequently we can choose yn ∈ φ(xn) such that
yn ∈ Y \ G. Observe now that xn → x and therefore (yn)n has a cluster
point y in Y because of property (1) and the inclusion

{yn}n ⊂
⋃
n∈N

φ(xn).

But we have reached a contradiction: on the one hand by definition y ∈ C(x),
on the other hand y ∈ Y \G because Y \G is closed, violating the hypothesis
that C(x) ∩ (Y \G) = ∅. This finishes the proof of the claim.

CLAIM 3. If G is a open set in Y such that C(x) ⊂ G, then there is an
open neighborhood V of x such that φ(V ) ⊂ G.
Indeed, take O ⊂ Y open such that C(x) ⊂ O ⊂ O ⊂ G and apply the
former claim to C(x) and O; we get an open neighborhood V of x such that
φ(V ) ⊂ O. Now, φ(V ) ⊂ O ⊂ G and we are done.

CLAIM 4. ψ(x) = C(x) and thus ψ(x) is compact-valued.
The inclusion C(x) ⊂ ψ(x) is a consequence of the definitions of the sets
C(x), ψ(x) and the definition of cluster point of a sequence; the inclusion
C(x) ⊂ ψ(x) follows now from the fact that ψ(x) is closed. Conversely, take
z ∈ ψ(x). We prove that z ∈ C(x): for any closed neighborhood U of z
in Y and for every n ∈ N there is some yn ∈ U ∩ φ(V x

n ). Choose a point
xn ∈ V x

n and a point yn ∈ φ(xn)∩U . Then xn → x and therefore (yn)n has
a cluster point y in Y because of (1). By definition y ∈ C(x) and because
U is closed we have y ∈ U which means that z ∈ C(x). This proves the
equality ψ(x) = C(x).

CLAIM 5. ψ : X → 2Y is upper semi-continuous.
We have to prove that for every open set G ⊃ ψ(x) there is an open neigh-
borhood V of x such that ψ(V ) ⊂ G. Take G as above. Since ψ(x) = C(x),
we apply claim 3 and find an open neighborhood V of x satisfying

(4) φ(V ) ⊂ G.

Now V is also an open neighborhood of any y ∈ V , and definition (2) implies

ψ(y) ⊂ φ(V ) ⊂ G.

Hence ψ(V ) ⊂ G and the upper semi-continuity of ψ has been proved.
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Finally observe that by definition φ(x) ⊂ ψ(x) for every x in X and the
claims prove the theorem.

Note that the class of spaces Y with the above property includes many
topological and topological vector spaces as for instance: the Lindelöf spaces,
the realcompact spaces (i.e., spaces homeomorphic to closed subspaces of
Cartesian product of copies of the real line, see [10], pages 271-277), angelic
spaces (see [4, 5] and references therein), Banach spaces with their weak
topology, dual Banach spaces with their weak∗ topology, etc.

3. Precompact subsets in uniform spaces

Given a uniform space (Z,U) the weight of the uniformity uw(Z) is the
minimal cardinality of a basis for the uniformity U . For every compact
Hausdorff space K there is exactly one uniformity U on the set K that
induces the original topology of K; all the sets containing the diagonal
∆ ⊂ K ×K which are open in the cartesian product K ×K form a basis
for the uniformity, see [10, Theorem 8.3.13]. Thus for a compact space the
equality w(K) = uw(K) always holds. The aim of the section is to prove
that in a uniform space (Z,U) with a decreasing basis for the uniformity
indexed in a countable product of directed sets the weight of the precompact
subsets can be dramatically decreased, see Theorem 3.1 below, from uw(Z)
up to the point of sometimes being able to decide even metrizability, see
Corollary 3.2.

In what follows if (J`,≤`)`∈L is any family of directed sets we consider
the cartesian product

∏
`∈L J` directed by ≤ where

α = (a`)`∈L ≤ β = (b`)`∈L if (and only if) a` ≤` b` for every ` ∈ L.

We will consider each J` as a discrete space and
∏

`∈L J` as a topological
space endowed with the product topology.

Theorem 3.1. Let (Z,U) be a uniform space and let us suppose that the
uniformity U has a basis BU = {Nα : α ∈

∏
s∈S Is}, where (Is,≤s)s∈S is a

finite or a countable family of infinite directed sets, satisfying

(5) Nβ ⊂ Nα whenever α ≤ β in
∏
s∈S

Is.

Then for every precompact subset K of (Z,U) we have the inequality

w(K) ≤ sup
s
|Is|.

Proof. It will be enough to prove the result for the compact subsets of Z: cer-
tainly, the corresponding result for precompact subsets can be then obtained
reasoning with the completion (Z̃, Ũ) of (Z,U) and having in mind that the
closure of the elements of B in Z̃× Z̃ is a basis for the uniformity Ũ , see [14,
§5.5.4], and that the precompact subsets of (Z,U) are relatively compact in
Z̃. Let us put J1 = N endowed with its discrete topology and directed by
its natural order ≤1 and for n = 2, 3, . . . let us define Jn =

∏
s∈S Is directed
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by ≤n:=≤ and endowed with the product of discrete topologies. Now, take
the directed product

X :=
∏
n∈N

Jn = N×
∏
s∈S

Is ×
∏
s∈S

Is × · · · ×
∏
s∈S

Is × · · ·

also endowed with its product topology. The reader can either easily check
or see [10, Theorem 2.3.13] to be convinced that

(6) w(X) ≤ sup
s
|Is|.

Let K be a compact subset of Z. For x = (m,α1, α2, . . . , αn, . . . ) in X
we define

φ(x) := {f ∈ C(K) : ‖f‖∞ ≤ m

and |f(s)− f(t)| ≤ 1/n if (s, t) ∈ (K ×K) ∩Nαn , n = 1, 2, . . . }.

Each φ(x) is bounded and closed for ‖ ‖∞ and uniformly equicontinuous;
by Ascoli’s theorem, [10, Theorem 8.2.10], φ(x) is a compact subset of
(C(K), ‖ ‖∞). On the other hand, by property (5) we have φ(x) ⊂ φ(y)
whenever x ≤ y in X. It is easily checked now that if xn → x in X then
there is y ∈ X such that

⋃
n∈N φ(xn) ⊂ φ(y). Since X is a first-countable

space we can apply Theorem 2.3 to this φ and Y := (C(K), ‖ ‖∞) to obtain
an upper semi-continuous, compact-valued map ψ : X → 2C(K) with the
property

(7) φ(x) ⊂ ψ(x) for every x ∈ X.

As every continuous function on K is ‖ ‖∞-bounded and uniformly continu-
ous for U|K×K we obtain C(K) =

⋃
{φ(x) : x ∈ X}; the inclusions (7) show

that C(K) =
⋃
{ψ(x) : x ∈ X} and then Proposition 2.1 applies to yield

d(C(K), ‖ ‖∞) ≤ w(X).

The inequality (6) and the equality w(K) = d(C(K), ‖ ‖∞) lead us to

w(K) ≤ sup
s
|Is|

and the proof is complete.

As a very special case of the former theorem we get the metrizability
result that follows.

Corollary 3.2 (Cascales and Orihuela, [4]). Let (Z,U) be a uniform space
and let us suppose that the uniformity U has a basis BU = {Nα : α ∈ NN}
satisfying

Nβ ⊂ Nα whenever α ≤ β in NN.

Then the precompact subsets of (Z,U) are metrizable for the induced uniform
topology.
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4. Applications to locally convex spaces

If B is a basis of absolutely convex neighborhoods of the origin for the
topology T of a locally convex space (E,T), then the topology is associated
to the uniformity U for which a basis is given by BU := {NU : U ∈ B}
where

NU := {(x, y) ∈ E × E : x− y ∈ U}.
It is not difficult to prove that χ(E,T) = uw(E,U) and t(E,T) ≤ χ(E,T)
with the latter inequality strict at times. Given an infinite cardinal number
m let us denote by Gm the class of those locally convex spaces (E,T) for
which χ(E,T) ≤ m.

We start this section with the following simple observation.

Proposition 4.1. Gm is stable by taking subspaces, quotients by closed sub-
spaces, completions and products of no more than m spaces.

Proof. The trace in a subspace F of a basis of neighborhoods of 0 in a LCS
(E,T) form a basis of neighborhoods of 0 in (F,T|F ). The image under
the canonical projection π : E → E/F (F closed subspace) of a basis of
neighborhoods of 0 in a LCS (E,T) form a basis of neighborhoods of 0 for
the quotient topology on E/F . The closures in the completion (Ẽ, T̃) of a
basis of neighborhoods of 0 in a LCS (E,T) form a basis of neighborhoods
of 0 in (Ẽ, T̃), [14, §15.3.1]. If (Xs)s∈S is a family of topological spaces
with χ(Xs) ≤ m, for every s ∈ S, and |S| ≤ m, then χ(

∏
s∈S Xs) ≤ m, [10,

Theorem 2.3.13].

Note that Gm is not stable by inductive operations. Indeed, take m = ℵ0,
that is, take the class of the metrizable locally convex spaces Gℵ0 : any non-
metrizable inductive limit of a sequence of Fréchet spaces does not belong
to Gℵ0 (for instance the test-space for distributions D(Ω)). Do observe
also that if (E,T) belongs to a certain Gm then the space with its weak
topology (E, σ(E,E′)) need not belong to Gm in general: for example, any
infinite dimensional Banach space E belongs to Gℵ0 but (E, σ(E,E′)) does
not. However, if we talk about tightness of spaces or weight of precompact
sets we can complete the properties in proposition 4.1 with the following
properties about inductive operations involving spaces of the class Gm

Theorem 4.2. Let (Es,Ts)s∈S be a family of LCS in the class Gm, and let
{fs : Es → E}s∈S be linear maps and let (E,T) =

∑
s∈S fs(Es,Ts) be the

locally convex hull of fs(Es,Ts). Then we have:
(i) t(E,T) ≤ m and t(E, σ(E,E′)) ≤ m, when |S| ≤ m;
(ii) the weight of the precompact subsets of (E,T) is at most m when

|S| ≤ ℵ0.

Proof. We shall start by fixing for every s ∈ S a basis Bs of absolutely
convex neighborhoods of 0 in (Es,Ts) such that |Bs| ≤ m. We will prove
first that t(E,T) ≤ m. In order to prove that t(E,T) ≤ m it is enough to
show that if A ⊂ E and 0 ∈ AT then there is a set B ⊂ A with |B| ≤ m and
such that 0 ∈ BT. The family

(8) B := {Γ(∪s∈Sfs(Us)) : Us ∈ Bs, s ∈ S}
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is a basis of 0 in (E,T) and the family

B0 := {Γ(∪s∈S′fs(Us)) : Us ∈ Bs, S
′ finite subset of S}

has at most m elements. Given A ⊂ E, 0 ∈ AT we define

B := {xU0 : xU0 is a chosen point in U0 ∩A if U0 ∩A 6= ∅, U0 ∈ B0}.

It is clear that B ⊂ A, |B| ≤ m and, moreover, 0 ∈ B
T. Indeed, if

U ∈ B then A ∩ U 6= ∅. Hence, there is U0 ∈ B0 with U0 ⊂ U and
U0 ∩ A 6= ∅; this means that the corresponding xU0 ∈ B ∩ U and therefore
0 ∈ B

T. Now we prove that t(E, σ(E,E′)) ≤ m. Since there is a homeo-
morphic embedding from (E, σ(E,E′)) into Cp(E′, σ(E′, E)), it suffices to
show that for every n = 1, 2, . . . we have l(E′, σ(E′, E))n ≤ m because in
this case t(Cp(E′, σ(E′, E))) ≤ m, [1, Theorem II.1.1], and consequently
t(E, σ(E,E′)) ≤ m. According to [14, §19.1.3] the space (E,T) is topo-
logically isomorphic to a quotient Ê = (

⊕
s∈S Es)/H of the locally convex

sum of (Es,Ts) by a closed subspace H; again according to [14, §22.2.2, and
page 287] the weak∗ dual (E′, σ(E′, E)) is isomorphically homeomorphic to a
closed subspace of

∏
s∈S(E′

s, σ(E′
s, Es)). Bearing in mind now Corollary 2.2

we only have to prove that
∏

s∈S(E′
s, σ(E′

s, Es)) is an upper semi-continuous
compact-valued image of a space of weight at most m: indeed, for s ∈ S we
consider Bs as a discrete space. Then the map ψs : Bs → 2(E′

s,σ(E′
s,Es))

defined by
ψs(U) := Uo, for every U ∈ Bs

is upper semi-continuous, compact-valued and E′
s = ∪{ψs(U) : U ∈ Bs};

now the map ψ :
∏

s Bs → 2
∏

s(E
′
s,σ(E′

s,Es)) given by

ψ((Us)s) :=
∏
s

ψs(Us)

for (Us)s ∈
∏

s Bs is compact-valued (Tychonoff theorem) and upper semi-
continuous, see [9, Proposition 3.6], and satisfies∏

s

Es = ∪{ψ((Us)s) : (Us)s ∈
∏
s

Bs}.

By [10, Theorem 2.3.13] we have that w(
∏

s Bs) ≤ m and we deduce that
t(E, σ(E,E′)) ≤ m.

Now let us prove (ii). Assume |S| ≤ ℵ0 and let U be the uniformity in E
associated to T. A basis for U is given by BU := {NU : U ∈ B}, where B is
the basis of neighborhoods of 0 described in (8). Consequently

BU = {NU : U = Γ(∪sUs), (Us)s ∈
∏
s

Bs}.

When directing each Bs downwards by inclusion then BU does satisfy con-
dition (5) in Theorem 3.1. Thus we get that the weight of T-precompact
subsets of E is less or equal sups |Bs|, so at most m, and the proof is com-
plete.

Let us mention that statement (ii) in the previous theorem appears in
[13] with a very different proof.
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Corollary 4.3. Let (E,T) = lim
→

(En,Tn) be an inductive limit of metrizable
LCS. Then,

(i) (E,T) and (E, σ(E,E′)) have countable tightness;
(ii) the precompact subsets of (E,T) are metrizable.

Proof. It is just the former theorem for m = ℵ0.

Note that every (LM)-space has a basis of neighborhoods of 0 with at
most the cardinality of the real numbers. By the last corollary if (E,T)
is a non-metrizable (LM)-space then the strict inequality t(E, σ(E,E′)) <
χ(E, σ(E,E′)) holds. It has to be stressed that although (LM)-spaces al-
ways have countable tightness, the non-metrizable (LM)-spaces are never
Fréchet-Urysohn, see [12]. Nevertheless, the metrizability of precompact
subsets ensures us that every point in the closure of a precompact set A of
(E,T) is actually the limit of a sequence in A.

Theorem 3.1 has been used to get the upper bound of the weight of
precompact subsets in locally convex hulls of spaces in Gm. But Theorem 3.1
has a bit more potential yet.

Theorem 4.4. Let (E,T) be a LCS with a family {Aα : α ∈
∏

s∈S Is} of
subsets of E′, where (Is,≤s)s∈S is a finite or a countable family of directed
sets satisfying

(i) ∪{Aα : α ∈
∏

s∈S Is} = E′;
(ii) Aα ⊂ Aβ whenever α ≤ β in

∏
s∈S Is;

(iii) for any α ∈
∏

s∈S Is the countable subsets of Aα are T-equicontinuous.

Then for every precompact subset K of (E,T) we have the inequality

weight(K) ≤ sup
s
|Is|.

Proof. Let us first observe that a set in a LCS is precompact for the given
topology if and only if every sequence in the set is precompact [14, §5.6.3].
Let T′ be the topology in E of uniform convergence on the family of sets
{Aα : α ∈

∏
s∈S Is} and let Tseq be the topology in E of uniform convergence

on all the sequences contained in some Aα, α ∈
∏

s∈S Is. It is clear that
σ(E,E′) ≤ Tseq ≤ T and σ(E,E′) ≤ Tseq ≤ T′. By Theorem 3.1 the weight
of T′-precompact subsets is at most sups |Is|. On the one hand T′ and Tseq

coincide on sequences, and therefore they have the same precompact sets;
on the other hand every T-precompact subset in E is Tseq-precompact. Now
we use [14, §28.5.2] to get that the three topologies T, T′ and Tseq coincide
on T-precompact subsets and so the proof is finished.

Recall that Cascales and Orihuela [4] defined the class G as those LCS
satisfying conditions (i), (ii) and (iii) in the former theorem with S = N and
In := N, for every n = 1, 2, . . . Theorem 4.4 says, in particular, that for a
space (E,T) in G, the T-precompact subsets are metrizable, see [4, Theorem
2]. The many results in [4] about G, see Introduction, provided impetus to
the study of compactness and weak compactness in locally convex spaces,
answering questions open at the time and extending results by [3], [16] and
[18], among others.



11

Now we give a characterization of when spaces in class G have count-
able tightness for the weak topology. To do so we will use the following
characterization of weakly real-compact LCS that can be found in [19, Page
137]

Theorem 4.5. Let < E,E′ > be a dual pair and let {Ei : i ∈ I} be the
family of all separable closed subspaces of (E′, σ(E′, E)). Then the following
statements are equivalent:

(i) (E, σ(E,E′)) is real-compact;
(ii) E = {x∗ ∈ (E′)∗ : x∗|Ei is σ(E′, E)-continuous for each i ∈ I}.

A topological space Y is said to be K-analytic, see [7], if there is an
upper semi-continuous set-valued map with compact values ψ : NN → 2Y

such that Y = {ψ(α) : α ∈ NN}. Since NN is metric and separable, we have
w(NN) ≤ ℵ0 and consequently for any K-analytic space we have l(Y n) ≤ ℵ0,
Proposition 2.1. This simple fact is one of the keys used to prove the next
result.

Theorem 4.6. Let (E,T) be a LCS in the class G. The following statements
are equivalent:

(i) (E, σ(E,E′)) has countable tightness;
(ii) For every topological space (Y,G), any function from E into Y that

is σ(E,E′)-continuous restricted to σ(E,E′)-closed and separable
subsets of E is σ(E,E′)-continuous on E;

(iii) Every linear form on E that is σ(E,E′)-continuous restricted to
σ(E,E′)-closed and separable subspaces of E is σ(E,E′)-continuous
on E;

(iv) (E′, σ(E′, E)) is realcompact;
(v) (E′, σ(E′, E)) is K-analytic;
(vi) (E′, σ(E′, E))n is Lindelöf for every n = 1, 2, . . . ;
(vii) (E′, σ(E′, E)) is Lindelöf.

Proof. (i)⇒(ii) Let f : E → Y be σ(E,E′)-continuous restricted to
σ(E,E′)-closed and separable subsets of E. To prove that f is continu-
ous it is enough to prove that for any set A ⊂ E if x ∈ A

σ(E,E′) then
f(x) ∈ f(A)

G
; but this is so because by hypothesis in this situation there is

D ⊂ A countable such that x ∈ D
σ(E,E′), thus f |

D
σ(E,E′) is continuous and

so f(x) ∈ f(D)
G ⊂ f(A)

G
. (ii)⇒(iii) Given a countable subset D ⊂ E it

is easy to check that spanQD
σ(E,E′) is a σ(E,E′)-closed and separable vec-

tor subspace of E. Then for any topological space (Y,G) and any function
f : E → Y , the σ(E,E′)-continuity of f restricted to σ(E,E′)-closed sepa-
rable subsets of E is equivalent to the σ(E,E′)-continuity of f restricted to
σ(E,E′)-closed separable subspaces. Clearly then (iii) is a consequence of
(ii). (iii)⇒(iv) It is a consequence of Theorem 4.5. (iv)⇒(v) Take (E,T) in
G. Then there is a family {Aα : α ∈ NN} of subsets in E′ satisfying:

(a) E′ = ∪{Aα : α ∈ NN};
(b) sequences in every Aα are T-equicontinuous;
(c) Aα ⊂ Aβ when α ≤ β in NN.
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Condition (b) implies that each Aα is relatively σ(E′, E)-countably com-
pact by Alaoglu-Bourbaki’s theorem, [14, §20.9.4], and so Aα is relatively
σ(E′, E)- compact because (E′, σ(E′, E)) is real-compact. If we define
φ : NN → 2E′

by φ(α) := Aα, α ∈ NN, then condition (c) on Aα’s implies
that φ satisfies condition (1) in Theorem 2.3. This last mentioned theorem
ensures us of the existence of an upper semi-continuous σ(E′, E)-compact-
valued map ψ : NN → 2E′

such that φ(α) ⊂ ψ(α) for every α ∈ NN. Condi-
tion (a) on Aα’s gives us E′ = ∪{ψ(α) : α ∈ NN} and so (E′, σ(E′, E)) is K-
analytic. (v)⇒(vi) This is a consequence of Proposition 2.1 already noted.
(vi)⇒(i) Since l(E′, σ(E′, E))n ≤ ℵ0, for n = 1, 2, . . . , then by [1, Theo-
rem II.1.1], the space of continuous functions Cp(E′, σ(E′, E)) has countable
tightness. Subspaces of spaces of countable tightness have countable tight-
ness and thus (E, σ(E,E′)) has countable tightness and (i) is proved. To
finish the equivalences we observe that obviously (vi)⇒(vii) and that Lin-
delöf spaces are real-compact, [10, Theorem 3.11.12], and thus (vii)⇒(iv).

Since (LM)-spaces E belong to G, Corollary 4.3 and Theorem 4.6 apply
to show that (E′, σ(E′, E)) is K-analytic. This can be proved also directly
with techniques similar to those used in the proof of Theorem 4.2 which
essentially was done in the proof of [3, Theorem 2]. But not every space
in class G has countable tightness for its weak topology. Indeed, there
is a Fréchet space (E,T) such that (E′′, σ(E′′, E′)) is not K-analytic [19,
Page 67, Proposition (24) and section 4 in §5, chapter II]. The strong dual
(E′, β(E′, E)) is a (DF )-space which, when endowed with its weak topology,
has uncountable tightness via Theorem 4.6. Therefore, in contrast to part
(ii) of Corollary 4.3, part (i) does not extend to all spaces in G. How far
in G countable tightness does extend motivates the remainder of the paper.
Even as it is, Corollary 4.3(i) substantially extends Kaplansky’s theorem, as
do, indeed, both of the remaining results.

Proposition 4.7. Let (E,T) be a space in the class G. If (E,T) has count-
able tightness then (E, σ(E,E′)) has countable tightness.

Proof. Assume that (E,T) has countable tightness. Reasoning as we did in
the proof of (i)⇒(ii)⇒(iii) in theorem 4.6, we obtain that every linear form
in E that is T-continuous on T-separable and closed subspaces of E is T con-
tinuous. The T continuous linear forms are exactly the σ(E,E′) continuous
linear forms; on the other hand the family of T-closed and separable sub-
spaces of E is exactly the family of σ(E,E′)-closed and separable subspaces
of E. With all this, we must conclude that the countable tightness of (E,T)
implies condition (iii) in Theorem 4.6 and so (E, σ(E,E′)) has countable
tightness.

Proposition 4.7 yields examples of (DF )-spaces with uncountable tight-
ness: Take, as above, any (DF )-space whose weak topology has uncount-
able tightness. Moreover, there exist (DF )-spaces with uncountable tight-
ness whose weak topology has countable tightness, denying the converse to
Proposition 4.7: Take E as in the first example of Section 5 of [13]; i.e., fix
a positive (finite) number p, let Λ be an uncountable indexing set, for each
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S ⊂ Λ define
ES = {u ∈ `p(Λ) : u(x) = 0 for x /∈ S},

and let E be the Banach space `p(Λ) endowed with the coarsest topology
such that the projection of E onto the Banach space ES along EΛ\S is
continuous for every countable S ⊂ Λ. A base of 0-neighborhoods for E
consists of the sets U of the form U = V + EΛ\S , where V is a positive
multiple of the unit ball in the Banach space `p(Λ) and S is a countable
subset of Λ. We observed in [13] that E is a sequentially complete ℵ0-
barrelled (DF )-space and has the same dual as the Banach space `p(Λ).
Therefore according to Corollary 4.3, t(E, σ(E,E′)) = ℵ0. But E itself
has uncountable tightness: the set B of characteristic functions of singleton
subsets of Λ has 0 in its closure but not in the closure of any countable
subset of B. We see from this example that a (DF )-space may fail to have
countable tightness even when both the weak and Mackey topologies do have
countable tightness.

Saxon and Tweddle [17] showed that if the Banach space `∞(Λ) is given
the coarsest topology making continuous the projections onto the Banach
subspaces

ES = {u ∈ `∞(Λ) : u(x) = 0 for x /∈ S},

where S runs through the countable subsets of Λ, then the resulting space
E is a Mackey ℵ0-barrelled space which is not barrelled. As observed in
Section 5 of [13], E is also a sequentially complete (DF )-space. Again, the
set B of characteristic functions of singleton subsets of Λ shows that E has
uncountable tightness.

Recall that E is [quasi]barrelled if and only if every σ(E′, E)-bounded
[every β(E′, E)-bounded] set in E′ is equicontinuous. Every (LM)-space is
quasibarrelled, but Komura produced a barrelled (DF )-space which is not
an (LM)-space, see [14]. The next step in the progression from ℵ0-barrelled
to Mackey ℵ0-barrelled is to ask if barrelled (DF )-spaces have countable
tightness. Indeed, they do. Even quasibarrelled (DF )-spaces do. In fact,
we have the following generalization of Corollary 4.3(i).

Theorem 4.8. Every quasibarrelled space (E,T) in G has countable tight-
ness, and therefore the same also holds true for (E, σ(E,E′)).

Proof. Proposition 4.7 permits us to prove only the first part. By definition
there is a family {Aα : α ∈ NN} of subsets in E′ satisfying:

(i) E′ = ∪{Aα : α ∈ NN};
(ii) Aα ⊂ Aβ when α ≤ β in NN;

(iii) in each Aα, sequences are T− equicontinuous.

(9)

Since E is quasibarrelled and (iii) holds, we have each Aα is equicontinuous.
Replacing each Aα by its σ(E′, E)-closed absolutely convex hull we may
and do assume that each Aα is a β(E′, E)-Banach disc (strong duals of
quasibarrelled spaces must be quasicomplete). In the terminology of [20],
(E′, β(E′, E)) is then a quasi-LB space and therefore [20, Proposition 2.2]
ensures the existence of a family of β(E′, E)-Banach discs of E′ that we
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again label as {Aα : α ∈ NN} such that:

(a) E′ = ∪{Aα : α ∈ NN};
(b) Aα ⊂ Aβ when α ≤ β in NN;

(c) for every β(E′, E)− Banach disc B ⊂ E′ there is α ∈ NN

with B ⊂ Aα.

(10)

We define a web W = {Cn1,n2,...,nk
} as follows:

Given α = (nk)k in NN and k ∈ N let us write α|k := (n1, n2, . . . , nk).
Now, for k, n1, n2, . . . , nk ∈ N we define

(11) Cn1,n2,...,nk
:=

⋃
{Aβ : β ∈ NN, β|k = (n1, n2, . . . , nk)}.

The family W = {Cn1,n2,...,nk
} is a web in the sense of De Wilde, [8]. The

web W enjoys the following properties:

(12) Cn1,n2,...,nk
⊂ Cm1,m2,...,mk

, for nj ≤ mj , k ∈ N, j = 1, 2, . . . , k;

For every α = (nk)k ∈ NN and every β(E′, E)− neighborhood of 0

U ⊂ E′ there is nU ∈ N and pU ≥ 0 such that Cn1,n2,...,nU ⊂ pUU.
(13)

The order condition in (12) immediately follows from the definitions. Con-
dition (13) is proved as follows: every Aα is β(E′, E)-bounded because every
sequence in it is T-equicontinuous; if we assume that (13) does not hold we
would find α = (nk)k ∈ NN and a β(E′, E)-neighborhood U of 0 in E′ such
that Cn1,n2,...,nk

6⊂ kU , k = 1, 2, . . . For every positive integer k there is
αk = (ak

n)n ∈ NN with αk|k = (n1, n2, . . . , nk), such that Aαk
6⊂ kU . We

define now an = max{ak
n : k = 1, 2, . . . }, n = 1, 2, . . . , and γ = (an)n. It

is clear that γ ≥ αk and Aγ 6⊂ kU , k = 1, 2, . . . , which contradicts the
boundedness of Aγ and validates (13).

Given positive integers k, n1, n2, . . . , nk we define

Dn1,n2,...,nk
:= Cn1,n2,...,nk

σ(E′,E)
.

Since the topology β(E′, E) has a base of neighborhoods of 0 consisting of
σ(E′, E)-closed sets and as the web W satisfies condition (13) we obtain:

For every α = (nk)k ∈ NN and every β(E′, E)− neighborhood of 0

U ⊂ E′ there is nU ∈ N and pU ≥ 0 such that Dn1,n2,...,nU ⊂ pUU.
(14)

If we re-label Aα :=
⋂∞

k=1Dn1,n2,...,nk
, then the new family {Aα : α ∈ NN}

still satisfies the properties in (10). Since (E′, β(E′, E)) is quasi-complete,
every β(E′, E)-bounded set is contained in a β(E′, E)-Banach disc, which
means that our reconstituted family {Aα : α ∈ NN} is a fundamental family
of T-equicontinuous subsets of E′. Taking polars in < E,E′ >, the family
{A◦α : α ∈ NN} is a basis of neighborhoods of the origin in (E,T). On the
other hand, if we read (14) after taking polars in E, we see that for every
α = (nk)k ∈ NN the increasing sequence

D◦
n1
⊂ D◦

n1,n2
⊂ · · · ⊂ D◦

n1,n2,...,nk
⊂ · · ·
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is bornivorous in the sense of [15, Definition 8.1.15]; by [14, §20.9.7] and [15,
Propostion 8.2.27] we have that for every ε > 0

(15) A◦α =
∞⋃

k=1

D◦
n1,n2,...,nk

σ(E,E′)

⊂ (1 + ε)
∞⋃

k=1

D◦
n1,n2,...,nk

.

Collecting all the information we have produced we know now that if we
define for α = (nk)k in NN

Uα :=
∞⋃

k=1

D◦
n1,n2,...,nk

then {Uα : α ∈ NN} is a basis of T-neighborhoods of the origin in E. Now,
we finally prove that t(E,T) ≤ ℵ0, that is, we prove if A ⊂ E and 0 ∈ A

T

then there is a countable subset B ⊂ A such that 0 ∈ BT; given such an A
the set

B := {xn1,n2,...,nk
: xn1,n2,...,nk

is a chosen point in D◦
n1,n2,...,nk

∩A,
if D◦

n1,n2,...,nk
∩A 6= ∅, k, n1, n2, . . . , nk ∈ N}

is countable and satisfies 0 ∈ BT.

In the terminology of [2] the web W satisfying (13) is a β(E′, E)-bounded
web; we refer the reader to [2] for a more detailed account of bounded webs
and their applications.

In light of [20, Theorem 3] we observe that the class of quasibarrelled
LCS in G coincides with those quasibarrelled LCS whose strong duals are
C-webbed in the sense of De Wilde.

Trivially, countable tightness is enjoyed by the increasingly wider classes
of normable, metrizable and Fréchet-Urysohn LCS. Since the latter are al-
ways bornological, see [22, 12], there is no distinction among (DF )-spaces:
If E is a Fréchet-Urysohn (DF )-space then E is normable, either by the
Theorem of [12] or by Webb’s Corollary 5.4 in [21]. However, it is apparent,
see Proposition 5.5(2),(3) of [21], that Webb did not know this result, being
unaware that Fréchet-Urysohn implies bornological.

More generally, a topological space X is sequential if every sequentially
closed set is closed in X. Webb proved (Proposition 5.5(1) of [21]) that every
sequential (DF )-space is quasibarrelled; indeed, as we show in [13], every
sequential (DF )-space is either normable or Montel, providing the converse
to Proposition 5.7 of [21]. As an immediate consequence, every sequential
(DF )-space has countable tightness. Is the same true of every sequential
space in G?

We conclude with questions related to Theorem 4.2, Proposition 4.7 and
Theorem 4.8.

Problem 1. Let (Es,Ts)s∈S be a family of LCS in Gm, let {fs : Es → E}s∈S

be linear maps and let (E,T) =
∑

s∈S fs(Es,Ts) be the locally convex hull
of fs(Es,Ts). If |S| ≤ m, is it true that the weight of precompact subsets of
(E,T) is at most m?
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Problem 2. Are there nice classes other than G for which Proposition 4.7
holds?

Problem 3. Must a (DF )-space with countable tightness be quasibarrelled?
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