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THE LINDELÖF PROPERTY AND FRAGMENTABILITY

B. CASCALES, I. NAMIOKA, AND G. VERA

Abstract. Let K be a compact Hausdorff space, C(K) the space of continu-
ous real functions on K. In this paper we prove that any tp(K)-Lindelöf subset
of C(K) which is compact for the topology tp(D) of pointwise convergence on
a dense subset D ⊂ K is norm fragmented, i.e., each non-empty subset of it
contains a non-empty tp(D)-relatively open subset of small supremum norm
diameter. Several applications are given.

1. Introduction

In what follows K will be a compact Hausdorff space, C(K) will stand for the
space of continuous real functions on K, and for a given subset F ⊂ K, tp(F ) will
be the topology in C(K) of pointwise convergence on F .

The notion of fragmentability as stated below was introduced by Jayne and
Rogers [8].

Definition 1.1. Let (X, τ) a topological space and ρ a metric on X . We say that
(X, τ) is fragmented by ρ (or ρ-fragmented ) if for each non-empty subset A of X and
for each ε > 0 there exists a non-empty τ -open subset U of X such that U ∩A 6= ∅
and ρ-diam(U ∩ A) ≤ ε.

A result by one of us in [10] implies that every tp(K)-compact subset of C(K)
is fragmented by the supremum norm. On the other hand, a Bourgin’s result
in [3, p.98], proved by using a construction by Stegall, states that the Radon-
Nikodým property holds for weakly Lindelöf and weak∗ compact convex subsets of
dual Banach spaces; in other words, weakly Lindelöf and weak∗ compact convex
subsets of dual Banach spaces are fragmented by the dual norm. The aim of the
present paper is to solve affirmatively the problem below:

Problem 1. Let D a dense subset of K and let H be a tp(D)-compact subset

of C(K). If H is tp(K)-Lindelöf, is H fragmented by the norm of C(K)?

that appears in [4]. Thus our main result, Theorem B, states that, if H satisfies the
hypotheses of Problem 1, then the compact space (H, tp(D)) is fragmented by the
norm of C(K). Our Theorem B is a common generalization of the results in [10]
and [3] cited above. It also extends [5, Proposition 1.1] and the main result in [4].
Our results here are very much related to the problem of knowing if `∞ = C(βN)
contains a tp(βN)-Lindelöf subset Y separating the points of βN. We prove that

this is impossible if Y is assumed to be tp(N)-Čech-analytic.
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2 B. CASCALES, I. NAMIOKA, AND G. VERA

Compact sets fragmented by a lower-semicontinuous metric are called Radon-
Nikodým compact and they are homeomorphic to a weak∗-compact subset of a dual
Banach space with the Radon-Nikodým property [11]. One of the consequences of
the positive solution of Problem 1 is that the space (H, tp(D)) appearing there is
Radon-Nikodým compact and so, for instance, it is sequentially compact as well
[11, Lemma 5.3].

2. Preliminary results on B1(H)

For a topological space H , Cb(H) stands for the space of bounded continuous
real functions on H and B1(H) stands for the space of pointwise limits of sequences
of continuous functions on H . 2N denotes the compact space of sequences of 0’s
and 1’s endowed with its product topology and 2(N) is the set of finite sequences
of 0’s and 1’s. For a t ∈ 2(N), we let |t| denote the length of t. Given σ ∈ 2N and
n ∈ N, let σ|n = (σ(1), . . . σ(n)) ∈ 2(N).

Since the following theorem, which appears in Pol [12, p. 34] with only a sketch
of a proof, is essential in our paper, we give a full proof.

Theorem 2.1. Let (H, d) be a complete metric space, D a subset of Cb(H) which

is uniformly bounded by 1 and K = D the closure of D in [−1, 1]H . Then the

following are equivalent

(a) K 6⊂ B1(H),
(b) There is a homeomorphism ϕ : 2N → ϕ(2N) ⊂ H, a sequence (fn)n∈N in D

and numbers −1 < s < t < 1 such that

fn(ϕ(σ)) ∈ Gσ(n) for every σ ∈ 2N and n ∈ N

where G0 := [−1, s) and G1 := (t, 1].

Proof. We note that f ∈ [−1, 1]H is not in B1(H) if, and only if, for some non-empty
closed set F ⊂ H and some pair −1 < s < t < 1 of real numbers, {x ∈ F : f(x) < s}
and {x ∈ F : f(x) > t} are both dense in F , cf. [2, Proposition 1E].
(a) ⇒ (b) Assume that there is f ∈ K \ B1(H). From the former remark we have
a closed set F ⊂ H and s, t as above. Let G0 := [−1, s), G1 := (t, 1]. Then,
{x ∈ F : f(x) ∈ G0} and {x ∈ F : f(x) ∈ G1} are both dense in F .

By induction on n = |t|, we choose a family {Ut : t ∈ 2(N)} of non-empty
relatively open subsets of F and a sequence (fn)n∈N in D such that

(i) U∅ = F ,
(ii) for each t ∈ 2(N), Ut0 ∪ Ut1 ⊂ Ut and Ut0 ∩ Ut1 = ∅,

(iii) d-diam(Ut) <
1

|t|
for each t ∈ 2(N), and

(iv) fn(Utj) ⊂ Gj for j = 0 or 1 and |t| = n − 1.

Construction. (i) begins the induction. For n ≥ 1, suppose {Ut : |t| < n}, {fi : i <

n} have been chosen so as to satisfy (i) − (iv). For each t ∈ 2(N) with |t| = n − 1,
choose at, bt ∈ Ut such that f(at) ∈ G0 and f(bt) ∈ G1. Since f ∈ D, there is
fn ∈ D such that fn(at) ∈ G0 and fn(bt) ∈ G1 for all t with |t| = n− 1. Since fn is
continuous there are open neighbourhoods Ut0, Ut1 of at, bt respectively such that
(ii) − (iv) are satisfied. This completes the construction.
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Now let

∆ :=
⋂

n

⋃

|t|=n

Ut =
⋂

n

⋃

|t|=n

Ut.

Then ∆ ⊂ H is compact and the map ϕ : 2N → ∆ given by ϕ(σ) =
⋂∞

n=1 Uσ|n is a
homeomorphism that together with (fn) fulfills condition (b).
(b) ⇒ (a) Let g : G0 ∪ G1 → {0, 1} be the obvious map. Let f be a pointwise
cluster point of (fn) and let ∆ := ϕ(2N). Then f(∆) ⊂ G0 ∪ G1, and g ◦ fn ◦ ϕ

is the n-th projection of 2N onto {0, 1}. Since g ◦ f ◦ ϕ is a cluster point of the
sequence (g ◦ fn ◦ ϕ), g ◦ f ◦ ϕ is not Borel measurable by Sierpinski’s theorem; cf.
[14]. Hence f |∆ is not measurable and therefore f ∈ K \ B1(H). �

The concept of independent sequence of functions as appears below was intro-
duced by Rosenthal in [13] (see also [2]),

Definition 2.2. A sequence of functions (fn) in R
Ω is called independent on A ⊂ Ω

if there are numbers s < t such that for each pair of finite disjoint subsets P, Q ⊂ N

we have ⋂

n∈P

{ω ∈ A : fn(ω) ≤ s} ∩
⋂

n∈Q

{ω ∈ A : fn(ω) ≥ t} 6= ∅(2.1)

If (fn) is a sequence of continuous functions independent on a compact set A,
then (2.1) holds for arbitrary disjoint subsets P and Q of N. This fact is used in the
proof of the next lemma, which links βN and independent sequences of continuous
functions.
Lemma 2.3. Let H be a compact Hausdorff space and (fn)n∈N a sequence in

C(H) uniformly bounded by 1. If (fn)n∈N is independent on H, then the mapping

n 7→ fn extends to a homeomorphism of βN onto the closure of {fn : n ∈ N} in

[−1, 1]H.

Proof. By the definition of βN, the map n 7→ fn extends to a continuous map

δ : βN → [−1, 1]H . Clearly δ(βN) = {fn : n ∈ N}. To show that δ is a homeo-
morphism, it is sufficient to prove that δ is one-to-one. Suppose α, β ∈ βN and
α 6= β. Then there are disjoint clopen neighbourhoods of α and β respectively,
i.e. for some P, Q ⊂ N, α ∈ P , β ∈ Q and P ∩ Q = ∅. Since H is compact and
{fn : n ∈ N} is independent on H , there exist real numbers s < t and an h ∈ H

such that δ(n)(h) = fn(h) ≤ s for all n ∈ P and δ(n)(h) = fn(h) ≥ t for all n ∈ Q.
Since α ∈ P , δ(α)(h) ≤ s by the continuity of δ. Similarly δ(β)(h) ≥ t. Hence
δ(α) 6= δ(β). �

Lemma 2.4. Let H be a compact metrizable space, D a uniformly bounded subset of

C(H) that separates the points of H and let K be the pointwise closure of D in R
H .

If H is Lindelöf relative to the weak topology σK induced by K, then K ⊂ B1(H).

Proof. We may and do assume that D is uniformly bounded by 1 and so K ⊂
[−1, 1]H . We show that K 6⊂ B1(H) implies that (H, σK) is not Lindelöf.

Since H is a Polish space, according to Theorem 2.1, K 6⊂ B1(H) implies the
existence of a sequence (fn)n∈N in D, real numbers −1 < s < t < 1 and a homeo-
morphism of 2N into H , denoted as χM 7→ hM ∈ H , such that for each M ⊂ N

fn(hM ) < s for each n ∈ N \ M, and(2.2)

fn(hM ) > t for each n ∈ M(2.3)
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The image ∆ of this homeomorphism is a compact subset of H and so σK-closed,
because, by the assumption, D separates the points of H and so the topology of
H is induced by D and is weaker than σK . The inequalities (2.2) and (2.3) imply
that the sequence (fn)n∈N is independent on H , and hence by Lemma 2.3, there

exists a homeomorphism δ of βN onto C
def
= {fn : n ∈ N} ⊂ K extending the map

n 7→ fn. From (2.2) and (2.3), it follows that, for each M ⊂ N,

x(hM ) ≤ s if x ∈ C \ δ(M) and x(hM ) ≥ t if x ∈ δ(M).(2.4)

For each x ∈ C, let

Gx = {hM ∈ ∆ : x(hM ) ≥ t} = {hM ∈ ∆ : x(hM ) > s}.(2.5)

Then Gx is a σK–closed and σK -open subset of ∆.
We show that for each A ⊂ C, a ∈ A if and only if Ga ⊂

⋃
{Gx : x ∈ A}.

Suppose a ∈ A. Then hM ∈ Ga implies a(hM ) > s and so x(hM ) > s for some
x ∈ A. Hence hM ∈ Gx for some x ∈ A by (2.5). Conversely, if a 6∈ A, then
there is a closed and open neighbourhood of a that is disjoint from A, i.e. for some
M ⊂ N, a ∈ δ(M) and δ(M)∩A = ∅. Then by (2.4), a(hM ) ≥ t and x(hM ) ≤ s

for each x ∈ A, i.e. hM ∈ Ga \
⋃
{Gx : x ∈ A} by (2.5).

Finally suppose (H, σK) were Lindelöf. Then the σK–closed subset ∆ is also
σK–Lindelöf. This implies that C is countably tight, i.e. for each subset A of C,
each point in A is in the closure of a countable subset of A. For, suppose A ⊂ C and
a ∈ A. Then from above Ga ⊂

⋃
{Gx : x ∈ A}. Since Ga, Gx are all σK–closed and

σK-open, there is a countable subset B of A such that Ga ⊂
⋃
{Gx : x ∈ B} which

implies that a ∈ B. This proves that C (and hence βN) is countably tight. But if
this were the case, then each compact separable space, being a continuous image
of βN, is countably tight. But, for instance, [0, 1][0,1] with the product topology
is separable and compact without being countably tight. This contradiction shows
that (H, σK) cannot be Lindelöf. �

3. Fragmentability

In this section, we prove the main theorem of this paper. The following lemma
is its very special case, but, nevertheless, it contains the crux of the matter.

Lemma 3.1. Let D be a uniformly bounded subset of C(2N) such that, for some

ε > 0, whenever x, x′ ∈ 2N, x 6= x′,then

ρ(x, x′)
def
= sup

f∈D

|f(x) − f(x′)| ≥ ε.

If K is the closure of D in R
2N

, then 2N is not Lindelöf relative to σK , the weak

topology on 2N induced by K.

Proof. Suppose that (2N, σK) is Lindelöf, and we will reach a contradiction. First,
by Lemma 2.4, K ⊂ B1(2

N). Let µ denote the normalized Haar measure on 2N,
and let

U = {U ⊂ 2N : U is Borel, σK-open and µ(U) = 0}.

Also let G =
⋃
U and C = 2N \ G. Then C 6= ∅, for otherwise, using the Lindelöf

property of (2N, σK), 2N can be covered by countably many members of U and
consequently µ(2N) = 0.
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Let ϕ : (K, τp) → (L1(2N, µ), norm) be the map that assigns to each f ∈ K the

class [f ]. Here τp is the topology of pointwise convergence in R
2N

. Since (K, τp) is
angelic by [2, Theorem 3F], one can show that ϕ is continuous. In fact, if A ⊂ K

and f ∈ A−τp , then there is a sequence in A converging pointwise to f . Hence by the
bounded convergence theorem, ϕ(f) ∈ ϕ(A)−. It follows that ϕ(K) is compact and
metrizable and ϕ : (K, τp) → ϕ(K) is a quotient map. We claim that if f, g ∈ K and
ϕ(f) = ϕ(g) then f(x) = g(x) for each x ∈ C. For, let V = {t ∈ 2N : f(t) 6= g(t)},
then V ∈ U and so V and C are disjoint. It follows that each member x of C defines
a continuous function x̂ on ϕ(K) satisfying x̂(ϕ(f)) = f(x). Hence Ĉ is a subset of
C(ϕ(K)) and the latter is norm separable. Note that if x, x′ ∈ C, then

ρ(x, x′) = sup
f∈D

|f(x) − f(x′)| = sup
f∈K

|f(x) − f(x′)| =‖ x̂ − x̂′ ‖ .

Here ‖ · ‖ is the supremum norm of C(ϕ(K)). Hence (Ĉ, norm) and (C, ρ) are
isometric. Since the former is separable and the latter discrete, we see that C is
countable. It follows that C and G = 2N \C are Borel sets and µ(C) = 0. We reach
our contradiction by observing that µ(G) = 0. To see this, let L be a compact
subset of G. Then L is σK closed in 2N, because the assumption that D separates
points of 2N implies that σK is finer than the topology of 2N. It follows that L is
σK-Lindelöf and hence it is covered by countably many members from U . Therefore
µ(L) = 0. By the regularity of µ, µ(G) = 0. �

From now onwards, except in the last corollary in this section, D will be a
dense subset of K. Given a tp(D)-compact subset H of C(K) we will look at

the elements of K as functions on H : for each point k in K we will denote by k̂

the restriction to H of the “point mass” at k, that is k̂(f) := f(k). It is clear that

D̂ = {d̂ : d ∈ D} is a pointwise bounded set of continuous functions on the compact

space (H, tp(D)), and K̂ = {k̂ : k ∈ K} is a pointwise compact set of continuous

functions on (H, tp(K)). Obviously, the closure of D̂ in R
H is K̂.

In the proof of the following theorem, we use the simple fact that, for (X, τ) in
Definition 1 to be ρ-fragmented, it is sufficient that each τ -closed non-empty subset
of X has non-empty relatively τ -open subsets of arbitrarily small ρ-diameter. Also
in the proof ‖ · ‖ will denote the supremum norm of C(K).

Theorem 3.2. Let K be a compact Hausdorff space and let D be a dense sub-

set of K. Then, every tp(D)-compact subset of C(K) which is tp(K)-Lindelöf is

fragmented by the supremum norm, and so, it is a Radon-Nikodým compact space.

Proof. Let H be a tp(D) compact subset of C(K) and let B denote the unit ball
of C(K). Then B is tp(D)-closed. If A is a non-empty tp(D)-closed subset of H ,
then by the Baire category theorem, there exists an n ∈ N such that (nB) ∩ A

has non-empty relative tp(D)-interior. Hence in order to prove that (H, tp(D)) is
fragmented by the norm it is sufficient to prove each (nB)∩A is fragmented by the
norm. So we may and do assume that H is uniformly bounded.

Suppose that (H, tp(D)) is not fragmented by the norm. Then, for some non-
empty tp(D)-compact subset C of H and ε > 0, each non-empty tp(D)-open subset

of C has norm diameter greater that ε. By induction on n = |t|, t ∈ 2(N), we
construct a family {Ut : t ∈ 2(N)} of non-empty relatively tp(D)-open subsets of

C and a family {xt : t ∈ 2(N)} of points of D, satisfying the following conditions,
where the closures are relative to tp(D):
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(i) U∅ = C,
(ii) for each t, Ut0 ∪ Ut1 ⊂ Ut,

(iii) |(f − g)(xt)| > ε for each f ∈ Ut0 and g ∈ Ut1, and
(iv) whenever s, t ∈ 2(N) and |s| < |t|, diam x̂s(Utj) < |t|−1 for j = 0, 1.

Construction. (i) starts the induction from n = 0. Next, for some n > 0, assume
that {Ut : |t| < n} and {xs : |s| < n−1} have been constructed. Fix a t ∈ 2(N) with
|t| = n− 1. By assumption, for some f0, f1 ∈ Ut, ‖ f0 − f1 ‖> ε, which means that
|(f0 − f1)(xt)| = |x̂t(f0) − x̂t(f1)| > ε for some xt ∈ D. Since x̂t and x̂s, |s| < |t| ,
are all continuous on (H, tp(D)), one can select tp(D)-open neighbourhoods Ut0

and Ut1 of f0 and f1, respectively, so that (ii), (iii) and (iv) are satisfied. This
completes the construction. Note that (iii) implies that U t0 ∩ U t1 = ∅ for each
t ∈ 2(N).

Let F :=
⋂

n

⋃
|t|=n Ut. Then F is a compact subset of (H, tp(D)) and it is

partitioned as F =
⋃

σ∈2N

⋂
n∈N

Uσ|n. Define ϕ : F → 2N by ϕ−1(σ) =
⋂

n∈N
Uσ|n.

Then clearly ϕ is a continuous and onto map. For each t ∈ 2(N) and σ ∈ 2N,
x̂t(ϕ

−1(σ)) is a singleton by (iv). Hence x̂t ‘lifts’ to a continuous function x∗
t on 2N

such that

f(xt) = x̂t(f) = x∗
t (ϕ(f))(3.1)

for every f ∈ F . If σ, σ′ ∈ 2N and σ 6= σ′, then for some n ∈ {0} ∪ N, σ|n = σ′|n
and σ(n+1) 6= σ′(n+1). If we let t = σ|n, then by (iii), |x∗

t (σ)−x∗
t (σ′)| > ε. This

means that the hypothesis for D in Lemma 3.1 is satisfied by {x∗
t : t ∈ 2(N)}. Let

L be the closure of {x∗
t : t ∈ 2(N)} in R

2N

. Then by Lemma 3.1, 2N is not Lindelöf
for the weak topology σL. However, we show below that our assumptions imply
that (2N, σL) is Lindelöf and this contradiction proves the theorem. To see that
(2N, σL) is Lindelöf, it is sufficient to prove that ϕ is (tp(K)−σL)-continuous, since
(F, tp(K)) is Lindelöf by hypothesis. For the continuity of ϕ, we must prove that
the map f 7→ ξ(ϕ(f)) is tp(K)-continuous on F for each ξ ∈ L. Fix ξ ∈ L. then
there is a net {x∗

tα
} that converges to ξ pointwise. By the compactness of K, we

may assume that xtα
converges to x ∈ K. Then by (3.1) we have that

ξ(ϕ(f)) = lim
α

x∗
tα

(ϕ(f)) = lim
α

f(xtα
) = f(x)

for each f ∈ F , and f 7→ f(x) is clearly tp(K)-continuous. �

Properties of tp(D)-compact norm bounded sets H which are fragmented by the
supremum norm can be found in [5]. For instance, it is proved there that for such

an H the closed convex hull of it, co(H)
tp(D)

, is again tp(D)-compact, satisfies

co(H)
tp(D)

= co(H)
‖ ‖

and this closed convex hull has the usual Radon-Nikodým
property.

If a topological space (X, τ) has a countable base (or more generally, is hered-
itarily Lindelöf) and if it is fragmented by a metric ρ, then a simple argument
with points of condensation shows that (X, ρ) is separable. Combining this with
Theorem B, we obtain the following.

Corollary 3.3. Let K be a compact and D a dense and countable subset of K.

Then, every tp(D)-compact subset of C(K) which is tp(K)-Lindelöf is separable for

the supremum norm.

In the next corollary, the rôles of K, D and H will be as in Lemma 2.
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Corollary 3.4. Let H be a compact Hausdorff space, D a pointwise bounded subset

of C(H) that separates points of H and let K be the pointwise closure of D in R
H .

If H is Lindelöf relative to the weak topology σK induced by K, then, for each closed

subset F of H, there is a dense Gδ- subset ZF of F such that {f |F : f ∈ K} is

equicontinuous at each point of ZF .

Proof. With the pointwise topology K is a compact Hausdorff space with the dense

subset D. As usual, each h ∈ H gives rise to ĥ ∈ C(K) such that ĥ(f) = f(h) for

each f ∈ K. Then h 7→ ĥ is a homeomorphism H → (Ĥ, tp(D)) and by hypothesis

Ĥ is tp(K)-Lindelöf. Hence by Theorem B, (Ĥ, tp(D)) is fragmented by the norm,
or equivalently H is ρ-fragmented, where ρ is a metric on H given by

ρ(h, h′) = sup
f∈K

|f(h) − f(h′)| for h, h′ ∈ H.

Consequently, using the category argument, cf. [11], one sees that, given a closed
subset F of H , there is a dense Gδ-subset ZF of F such that the identity map
H → (H, ρ) is continuous at each point of ZF , which is equivalent to the conclusion
of the corollary. �

Remark 3.5. The corollary above is a generalization of Théorèm 4.1 in [17] where
the space (H, σK) is assumed to be K-analytic. However, Talagrand remarks that
one can prove the theorem with only assuming that (H, σK) be Lindelöf and that
“la démonstration serait alors beaucoup plus longue”. The proof of the stronger
theorem has never been published.

4. Applications

Given a Banach space (X, ‖ · ‖), a subset B of the dual unit ball BX∗ is said
to be norming if ‖ x ‖= sup{|x∗(x)| : x∗ ∈ B} for every x ∈ X . As a consequence
of Hahn-Banach separation theorem, if B is norming then its absolutely convex
hull D is weak∗ dense in BX∗ . In this way, X endowed with the topology σ(X, B)
of pointwise convergence on B (or equivalently, on D) appears as a subspace of
(C(BX∗), tp(D)) and Theorem 3.2 can be used to state the corollary below.

Corollary 4.1. Let (X, ‖ · ‖) a Banach space and B ⊂ BX∗ a norming subset.

Then, every weakly Lindelöf σ(X, B)-compact subset of X is fragmented by the

norm and so it is a Radon-Nikodým compact space under σ(X, B).

This corollary implies the result in [3] mentioned in the Introduction without
the convexity assumption: a weakly Lindelöf weak∗-compact subset of a dual Ba-
nach space is fragmented by the dual norm. In [15], Srivatsa proves that, if f

is a continuous map from a metric space T into a Banach space X with its weak
topology, then f is the pointwise (norm)-limit of a sequence of continuous functions
T → (X, ‖ · ‖), i.e. f ∈ B1(T, X). The following corollary shows that, if the weak
topology in the above is replaced by σ(X, B) for some norming subset B of BX∗ ,
one still reaches the same conclusion provided that the image of f is contained in
a weakly Lindelöf subset of X and T is complete.

Corollary 4.2. Let K be a compact Hausdorff space, D ⊂ K a dense subset, T is

a complete metric space and f : T → C(K) a tp(D)-continuous function. If there

is a tp(K)-Lindelöf subset Y ⊂ C(K) such that f(T ) ⊂ Y then f ∈ B1(T, C(K)).
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Proof. To prove that f ∈ B1(T, C(K)) it is enough to prove that for every compact
subset W of T the restriction f |W has a point of norm continuity, [16]. Given a
compact W ⊂ T , the image f(W ) is tp(D)-compact and so norm fragmented after
Theorem 3.2. According to [11, Lemma 1.1] the identity map

id : (f(W ), tp(D)) → (f(W ), ‖ · ‖)

has a point of continuity and thus we get that f |W has a point of norm continuity
and the proof is done. �

It is a usual exercise in elementary measure theory that, if f is a real-function on

R×R such that ft
def
= f(t, ·) is continuous for each t ∈ R and such that f s def

= f(·, s)
is continuous for each s belonging to a dense subset of R, then f ∈ B1(R×R). The
following corollary, which is a straightforward consequence of the previous one, is
a far reaching generalization of this. For related results concerning measurability
of separately continuous functions, see [9], [18] and references cited therein.

Corollary 4.3. Let K be a compact Hausdorff space and T a complete metric

space. Let f : T × K → [−1, 1] be a function verifying

(i) There is a tp(K)-Lindelöf subset Y ⊂ C(K) such that {ft : t ∈ T} ⊂ Y .

(ii) The set {x ∈ K : fx ∈ C(T )} is dense in K.

Then, f ∈ B1(T × K).

In [1, p. 610], Arkhangelskii raises the following question: Suppose K is a
compact Hausdorff space. If there exists a Lindelöf subset Y of (C(K), tp(K)) that
separates points of K, must K be countably tight? As far as we know, this question,
in the usual set theory, is still open. When K = βN, which is not countably tight as
seen in Section 2, the question above is the same as Problem 2 in [4]. The following
corollary is a partial answer to this problem.

Corollary 4.4. `∞ = C(βN) can not contain a tp(N)-Čech-analytic and tp(βN)-
Lindelöf subset Y separating the points of βN.

Proof. Assume that there is such a Y . Since (C(βN), tp(N)) = (`∞, tp(N)) is a

metric analytic space, if Y is tp(N)-Čech analytic then Y is metric analytic too.
The last implies the existence of a continuous map from a Polish space P onto
(Y, tp(N)), say,

ϕ : P → (Y, tp(N)) ↪→ (C(βN), tp(N)).

Now, Corollary 4.2 can be applied to deduce that ϕ ∈ B1(P, C(βN)). This implies
that its range, which contains Y , is norm separable and so βN must be metrizable
which is impossible. �

Next result is more general than [4, Corollary F] and it is in the same vein as
results [7, Theorem 1] and [6, Corollary 8]. The ideas of [4, Corollary F] can be
used to provide a proof of this corollary.

Corollary 4.5. Let K be a compact Hausdorff space, D ⊂ K a dense subset, T a

topological space that contains a dense Čech-complete subspace and f : T → C(K)
is a tp(D)-continuous function. If there is a tp(K)-Lindelöf subset Y ⊂ C(K) such

that f(T ) ⊂ Y , then f is norm-continuous at each point of a dense Gδ subset of T .
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