[TARMONIC ANALYSIS

Cuido Weiss

1. INTRODUCTORY REMARKS CONCERNING
FOURIER SERIES

Classical harmonic nim]yéis deals mainly with ‘rhe Stl.ldy of
Tourier series and integrals. It oceupies a cen_tml pom'tmn in that
branch of mathematics known as analysis; in fact, it has been
deseribed [10, p. xi] as “the mecting ground” 'of the t.,}ICOl‘y‘Of
functions of a real variable and that of m}alytlc fm1ct110ns ot.a,
complex variable. Consequently it avises, in a nlntural‘ way, 11*11
ceveral different contexts. Morcover, many - basic notlonsi anc
results in mathematics have been developed by 113:1t-hemat-wsa}ns
working in harmonie analysis. The modern Foncept of function
was first introduced by Dirvichlet while studymg_ thfz convergence
of Fourier serics; more recently, the theory of dlSl.l‘l].)'l_ltH)n.S (gen-
cralized functions) was developed in elose connection with the
study of Fouwrier transforms. The Riemann and, Tater, the Le-

hesgue intezrals were originally introdueed in works dealing \\1:]1

sttt S i e e . s oD

harmonie analysis. Infinite cardinol and ordinal numbers, prob
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ably the most original and striking notions of modern mathematies,
were developed by Cantor in his attempts to solve a delicate
real-variable problem involving trigonometric series.

It is our purpose to present some of the main aspecets of classieal
and, to a lesser extent, modern hormonic analysis. The develop-
ment of the former uses prineipally the theories of functions of a
real variable and of a complex variable while the latter draws
heavily from the ideas of abstract functional analysis. Conse-
quently, we shall assume the reader to be acquainted with the
material usually presented in a first course in Lebesgue integra-
tion or measure theory and to have an clementary knowledge of
analytie function theory; morcover, we will require a minimal
knowledge of functional analysis. t

Suppose that we are given a real- or complex-valued function f,

defined on the real line, periodic of period 1 (that is, f(x) = f(z - 1)

for all #) and (Lebesgue) integrable when restricted to the interval
0, 1).1 Tts Fourier transjorm is then the function j, defined on
the integers, whose value at (the kth Fourier coefficient) is

Jay = [} j@eeieay,

"he Fourier series of f is the serics

Bes 0, 1, 42 3 oo,

0

(1.1) 3 Jk)eznins

= — o

considered as the sequence of (symmetric) partial sums

n = .
(1.2) si(@) = % jk)erite,
k=-—n
The reader is undoubtedly familiar with these notions; however,
he has probably been introduced to them n a slightly different
manner. For example, in classical treatments of Fourier series

T The reader shonld be acquainted with the clementary propertics of Banach
spaces and Hilbert spaces, as well as those of linear uperators acting on these

spaces, He is well advised to alance over the article on functional analysis in
ol R . —

Ef vt e lntegrable over any finite subinterval of (—=

w beim “periodie” to mean periodie and of period 1.

).
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the term “Iourier transform” is not used. Generally, the sequence
of Fourier coefficients

o = j;lf(t)e_'_’rr'k! dt,

. . ) 5

is introduced without emphasizing that one has rc:ﬂl)l clelﬁnc:li \
1 N fn O

function on the integers (the Fourier transform) and the Fourie

@

]\‘.=0,:|:1,:{:2; :J:B, Ty

: 5 N o ek,
series of f is usually denoted, simply, by the series X Cie

=—2

'].he abO‘. ¢ no [‘.‘dtl()ll r.l.nd elllpllﬂS]S (aS “1” ShOI tl} bCCOIHC a[)pa =
ll 1 1 t() give & ed ﬂI)p[OﬂCh t() th(} the() } ()i
ent) arc llS(,‘fL n Ol(lC B 1 lllllfl
e y gS an eX-
1er 1 I ourier lllt(,’ﬂ I r].l& and tll@ man an
T()Ul‘ er ser CS, B 3 1Y a]” (]
I lllth()[llltil “llell i -V 1 trl c ] ourier scries
tCnSlOIlS. 2 e, ! .]S leal all Cd!
Off 15 Often lllthduCCd as th.e series Ve

By S (e 08 2wkw - by sin 2eke)
(1.1 3 + k2=:1 (ar cos 2= :
considered as the sequence of partial sums
: 5 bx -+ be sin 2akx),
(1.2’) Sn(;rr) = Eﬂ -+ ké)[ (ak cos 2rkx + b

where 1 _
o =2 [ Y0 cos 2kt dt and b = 2 L 7(t) sin 2nke dt,
0

E=0 1 2 3, ---. It is easy to verify that the two e.\'pl_'essions
c= U 4, 409 .
1.2) and (1.2') are equal. (4) o ' _—
( Ilz most(advanced calculus courses it is ShO\.\'n tha't th%ﬁl (‘)1)11 ;;31
series (1.1) (or (1.17)) converges to f(z) provided f 113 :ﬁl EC:\I-I ii
: int . For example, as we shall show
well-behaved at the point x T exal _ : i
i 'S W er differentiable at the point =z.
. 3, this occurs whenever f Is b thie :
. E‘E;fis is, a solution of a very speeial casc of the cenual}pﬁ)b[cm 13
i “ourier series: to determine whether, an
the classical study of Fourier series: ehietbist md
'l represents the function f. Perhap
in what sense, the series (1.1) represen : \ :
:)I;le“(l)l; the best ways of penctrating into the subject of harmonie
- i is problem.
alysis is by studying this pro . - o
an;f{:e pose this problem in the most obvious way by a.sllxlm‘g (1f
the series (1.1) converges to f(z) for all x or for almost af CLT:
much more reasonable question, since altering f on a set of meas
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ure zero does not alter the Fourier scries), we immediatoly en-
counter some serious difficulties, In fact, I{olmogoroff [10, p. 310]
has shown that there exists a periodic function, _integrable on (0, 1),
“’l_}u@mm‘iﬁxﬁ’_@i@éﬁixgi‘ms;sgl.ux:h;:z_:g- In general, one must
impose fairly strong conditions on J in order to obtain the con-
vergence of its Fourier series, Perhaps the most important up-
solved problem in the classical theory is the following: does there
exist a continuous periodic fullctjgg,_\_‘.;lgut_)ﬁs_(:_,jj’_p__l‘l_l_‘_i_e__p§C_1‘i(;5 diverges
on a set of positive measurc?

On the other hand, if we consider only functions in L0, 1),
that is, periodic functions J such that

1l = (f, 5@ )" < o,

we obtain a complete and elegant solution to the eentral problem
announced above restricted to this space and its norm. More
precisely, we shall show that in this case the partial sums (1.2)
converge to f in the L2-norm; that is,

. . 1 . 5 \112

lim ||f - s,[|, = lim (]:) [$a () -—f(:r;)l-d:v) =0,
This is an immediate conscquence of the fact that, with respect
to the inner product (f,g) = j‘; ; f(@)g(x) d, L0, 1) is “essen-

tially” a Hilbert spacef and the exponential functions e, i = 0, £1,
+2,+3, -+, where ex(x) = ez forman orthonormal basis; that is,

(13) (eh 6_,') = j;l e27ikzg—2nijz dz = ﬁkj,

where &, is the “Kronecker 8" (8c; = 0 when % #Jand 8y = 1),
and for each f € L0, 1)

n

Z e — f’E

k=—n

(1.4) lim

n—=

= lim ( Eni ekl — f, Zn) Crer —f) =0,
k

n—r® \k=—p b= —n

T More precisely, it is the collection of equivalence classes we obtain by

identifying functions in L*0, 1) that are equal almost everywhere that forms
a Hilbert space.
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when ¢ = (f, ex) is the kth Tourier coeflicient of f, k& = 0, =® 1,

492 .... While the orthogonality relations (1.3) are obvious,
4 - . -

the convergence (1.4) will require some proof. A very simple argu-

k n

ment, however, shows that the partial sums s, = T ae =

k=-—n

5 i -nor ion in 12
3 f(k)er converge in the L:norm to some function F
=-n

By the Riesz-Ilisher theorem, which asserts that all the L»
spaces, 1 < p < =, are_complete with respect to .the L'"-llOl‘l}'l,
-~ this result will hold provided the scquence {s.} is Cauchy‘m
YL lim ||sn — smllz = 0. But if, say, m < n, the orthogonality

n,m-—o

felations (1.3) imply that
“sn - sm“"ﬁ = (Sru Sn) = 2(8111, Sn) + (sm, Sm)
= 2 |ar= 2 [|J/®)P

n>lkl>m n >kl >m

That this last sum tends to zero as m and n tend to = follows
from Bessel's tnequality for functions f in L*(0, 1),

(15) 2 ol < WIE = [ 1@k ds,

k=—w

which is an easy consequence of the orthogonality ‘}'elatic).ns (1.3)
and the definition of the I'ourier coefficients ¢ = f(k): since, for

any.g in L*(0, 1), (g, ) = 0, we have

05( é Ckek_f)kg Ckek_f)

=—n -1

n n
=( 20 Ciér, 2 ce

k=—n k=-—n

- ( % Ckek;f) = (f, i ‘E anek) + (f, /)

b= — 1 = —

= % lalr— 2 lal = 2l + B

k=-—n =-—n
That is.
2 el < SILE
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and (1.5) follows by letting n —> ». These arguments give a
flavor of the elegance and simplicity of the L>-theory. (%)

Another satisfactory solution of the problem of representation
of functions by their Fourier series is to consider, instead of con-
vergence, some methods of summability of Fourier series at indi-
vidual points. The two best known types of summability (and
the only ones we shall consider) ave Cesaro and Abel summability.
The former (often also referred to as the method of summability
by the first arithmetic means or, simply, as (C, 1) summability) is
defined in the following way: suppose we are given a numerical
series ug + w; + ug + - - - with partial sums sy, sy, s, - - -. We then
form the (C, 1) means (or first arithmetic means)

_Sotst - 4s, on v
On = = 1 _,§0(1 T+1)u,

and say that the series is (C, 1) summable to [ if lim o, = L. The

n—w%

Abel means of the sevies are defined for cach r, 0 < r < 1, by setting

A@) = wo + wypr + wp® f -+ = EO wrt
k=

and we say that the series is Abel summable to 7if lim A@r) = L.

r—l-—
It is not hard to show that if wy + 2w, -+ u, + -+ - is convergent to
the sum [ then it must be both (C, 1) and Abel summable to /.
On the other hand, there are many series that are summable b~
not convergent. An illustrative example is the series 1 — 1 +1 -

kS R = 5: (—=1)*, whose (C, 1) and Abel means are easily seen
k=0

to converge to 4. It can also be shown that (C, 1) summability
Mesmmm Thus, many results involving Abel
summability follow from corresponding theorems that deal with
Cesiro summability. Nevertheless, an independent study of the
former is of interest, particularly when we consider Fourier series
of functions f. This is true, not only beeause such series may be
Abel summable under weaker conditions on J than are necessary
to guarantee their (C, 1) summability, but also because Abol
summability has speeial properties, related to the theory of har-

e e —

—
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monic and analytic functions, that are not enjoyed by Cesaro
summability.

We now describe, briefly, how these concepts apply to the study
of Fourier series. The two most important results in connection
with the problem of representing functions by their Fourier
series are the following:

(1.6) If f is periodic and integrable on (0, 1) then the (C', 1) means
and the Abel means of the Fourier series of f converge to

, +H{f(@o + 0) + flxo — 0)}
at every point wxo where the limits f(vo &= 0) exist. In particular,
they converge at every point of continuity of f.

(1.7)  If f is periodic and integrable on (0, 1) then the (C, 1) means
and the Abel means of the Fourier series of f converge to f(x) for
almost every x in (0, 1).1 C Convore }e on U f

We can obtain more insight into these results by examining
more closely the first arithmetic means and the Abel means of
the I'ourier series of a function f. We first obtain an expression
for the partial sums (1.2):

kﬁf ) F(k)e2nitz
3 ([ s ar) e
= fol (k}z e‘]rik(s—t))f(t) dt.

By multiplying D,.(6) = g

b= —n

sa(z) =

Il

2k by 2ginm = ¢ o-ix@ — gid)

- all but the first and last term of the resulting sum « ancel and we

obtain

(2)

2 D,.(8) sin 78 = (e~ Cnt D=0 — gCntD=if) = 2 gin 2n + 1)7d;

1 When restricted to Cesiiro summability (1.6) is known o< the theorem of
Fejér and (1.7) as the theorem of Lebesgue. That these resulis then hold for
Abel summability follows from the fact, mentioned above, that (C, I) sum-
mability implies Abel summability.
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that is,

1 In - i
(1.8) D) = E‘P—%TU‘J”—" (3) Dn(0)= 20+
Hence,
(1.9) sa(z) = ﬁ) ' (ODx — 0 dt

sin (2n 4+ Dr(z — 0) dr.
sin w{x — t)

= [0

The expression (1.8) is called the Dirichlet kernel. We can now
express the (C, 1) means in terms of it:

30(3'3) + (@) + - -
on(®) = n+1

. -ll_ 1 ﬁ]lf(t) (éo Dy(z -— t.)) dt.

By multiplying the numerator and denominator of
1 nosin (2k + D#d
n+1 1—|—1L0 sin w8

by sin #8.and 1‘eplacing the products of sines in the numerator
by differences of cosines we obtain

+ s.(2)

K.(0) = D.(6) =

_ 1 1 cos2kn0 — cos 2(k + 1)x0
(1.10)  K.(0) = n+ 1,5 2 sin? ()
11— cos2(n+ 1)nb
Tan+4+1 2 sin?
1 sin (n -+ D)x07]* I
T 41 [ sin 0 :l Ka (0) L
Consequently,
(111)  ou(x) = j;lf(t)h’n(a: —f)adt

_ sin (n + Drle —
T + 1 [ f@) { 1 :

sinw(x — )

{)}? dt.

K,(0) is called the Fejér kernel.
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The result (1.6) follows casily from three basie properties of
this kernel:
1.
(A) fo K.(0)do = 1;
(B) K.(0) = 0;
(C) for each s >0, max K.(0) ~——>0asn—— .

§<A<1—4

Property (B) is obvious. Property (A) is a consequence of the
corresponding property for the Dirichlet kernel (which is immedi-
ate:

1 5 12:‘!" e
j;D,,(e)a’e:kE ﬁ)e g = 1) (5)

=-n

and the representation K,.(0) = kéo D(0)/(n -+ 1). Tinally, (C)
follows from the inequality (see (1.10))

7
1 e 2
max K.@0) < sii€qs, ~ % (¢
550151'(—5 ©) < n+1 B )
Now, to obtain (1.6) we argue as follows: suppose 2, is a point
at which the limits f(xo + 0) exist and let a = £{f(x + 0) -+
f(xy — 0)}. Then, using the periodicity of the functions involved,
the change of variables ¢ = a2 — s, and property (A),

onae) —a= [ ; TR Lo = &) da— 5 5 1
= _lf,gf (o — OKW(t) dt — a f_li Z K.d ()

_ 2]:{1-(1'0 i) ‘;‘f(l‘o +8 cz.} K"("‘) dt

+ {fo — 1) — a} K. (0) dt.

s<lij<1/2

Hence, if 8 > 0 is so chosen that |f(zo — £) + f{xo + ) — 2¢| < €
if |{| < 8, we have, by (B) and (A),
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3
lon(re) — a] < e fo K. () dt

+ { max Kn(t)} [55:!}51/2 [f(xo — &) — a| at

<k £1/2

vz -,
< ¢ [_”2 K.(0) dt

+{ max K,.(t)} f_lﬁ |f(xo — &) — d| dt

s<lii<1/2

= e1 +{ max Kn(f)} [_1'32 |[f(xo — ) — a| dt;

s<i<s1/2

but, by (C), the last term tends to 0 as n — . Since ¢ > 0 is
arbitrary we can conclude that lim |o.(x0) — a| = 0 and (1.6) is

proved.

The theorem of Lebesgue, result (1.7) for the (C, 1) means, is
somewhat deeper and we postpone its proof until later. Since
(C, 1) summability implies Abel summability, as remarked above,
both the results (1.6) and (1.7) follow once we establish them for
Cesaro means. We commented before, however, that an inde-

pendent study of Abel summability is of interest since it has special . -

properties not enjoyed by (€, 1) summability. This is easily made
clear by examining the Abel means of Iourier series more closely;
we do this by showing how the study of I'ourier series is intimately
connected with analytic function theory.

That this connection should exist is not surprising once we
make the observation, when f is real-valued, that the series (1.1)
is the real part of the power series

(1.12) O+ 2 2w . (8)

restricted to the unit cirele z = €27z, We note that this series
defines an analytic function in the interior of the unit circle sinee
the coefficients f(k) are uniformly bounded (in faet,

7@l < [ 151 d = lifll).

Thus, the real part of (1.12) is a harmonic function when r =
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lz]| < 1. But this real part is nothing more than the Abel mean
of the Fourier series (1.1):

A, = A0, 2) = JO) + B 1)@t + e2iv)

I

s rEf(k)emike, (QJ

k=—=

The imaginary part of (1.10), when z = €27z, is (formally),

= —x

(1.13) —1 T (sgn Hik)emits,

where, for any nonzero complex number z, sgnz = z/|z| and
sgn 0 = 0. This series is called the series conjugate to the Fourier
series (1.1). Though it is not, in general, a IFourier series, this

conjugate series is closely connected (see Sec. 4) to a (not necces-

sarily integrable) function, the conjugate function, f.

As in the case of the (C, 1) means, the Abel means A(r, z) have
an integral representation; that is, a representation similar to
(1.11). We have, for 0 < < 1,

Il

5 rlKf (k)e2ik=

=—c0

> plA (Llf(t)e“%"“ (H)e‘lrikz

k= — =

=£(§”WMH%©%

k=—=»

A(r, z)

It

the change in the order of integration and summation being justi-
fiable by the uniform convergence of the series

P(J‘, ) = % rlkig2wio ~
for 0 < r < 1. But, sctting z = re?=®, P(r, 6) is simply the real
part of

14+ 3 2rke2eitd = 1 4 2
k=1 k

oy

14
R’ﬁ
1z 1 -

R E

™
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Conscquently,
1 =1
(4 _——_—
P, 0) = 1 — 2rcos 2m0 + 1?
and we obtain the desired integral representation for the Abel
means

um)Am@=Lme—wmm‘ "

1 1__]..'3

~ Jo 1 — 2rcos 2r(x — 1) + ].zf(t) dt.

(1.14)

P(r, 6) is called the Poisson kernel and the integral (1.15) is called
the Poisson integral of f. The reader can easily verify that this
kernel satisfies the three properties, completely analogous to those
of the IFejér kernel:

(A7) j;ll P(r, 0) do = 1, (10)

(B P(r,0) = 0;
(C") for each § >0, max P(r,8) —0asr—> 1L
5<0<1—38
From this we see that to the proof of (1.6) given above in the case
of the Cesiro means there corresponds a practically identical proof

of this result for the Abel means.
14z
1—=

et us observe that the imaginary part of has the form

2r sin 276
Q0 = T2 cos 2n8 + 12
and one readily obtains the Abel mean of the conjugate Tourier
series (1.13) by the integral
@w)gmm=LWmimwmm

1 2r sin 2w(x — f)
0 1 — 2rcos2m(x —{) -+ r’-"f(t) ¢

This integral is called the conjugate Poisson integral of f and
Q(r, 0) is known as the conjugate Poisson Lernel.
In this discussion we assumed that f was real-valued. It is clear.
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however, that the Poisson integral formula (1.15) for the Abel
means of the Fouricr scries of [ holds in case f is complex-valued
aswell. Tosce this one need only apply it to the real and imaginary
parts of f.

Before passing to other aspects of harmonic analysis let us
examine more closely the integrals (1.9), (1.11), (1.15), and (1.16)
that gave us the partial sums, the (C, 1) means, the Abel means of
the Fourier series of an integrable periodic funetion f, and the
Abel means of the conjugate Fourier series of f. All these integrals
have the form

(1.17) @ *N@ = [} o — 05 at

where g is a periodic integrable function. In fact, in all these cases
g is much better than merely integrable; for example, it is a
bounded function and, consequently, it is obvious that, for each x,
the integrand in (1.17) is integrable and (g * f)(x) is well defined.
We shall sce, however, that the latter is well defined for almost all
z when ¢ is integrable. We therefore obtain a function, ¢ = f
(defined almost everywhere), by forming the integral (1.17) when-
ever g and f belong to L'(0, 1) and are periodic. This operation,
that assigns to each such pair (g, f) the function g * f, is called
convolution and plays an important role in the theory of Iourier
series. The most important elementary propertics of convelution
are the following:

() If f and g are periodic and in L0, 1) so is f * g and
1
155 gll = [, 16 * @) de

([ r@ra)( [ owra)

/11 gl

IA

I

G) fxg=g=*f;

(iil) (f*g) *h = f = (g » k) whenever f, g, and k are periodic and
n LY0, 1);

(iv) For f, g, and h as in (iii) and any two complex numbers a
and b

S (ag + bh) = a(f = g) + b(f * b).

e ———
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That (f = ¢)(x) is well defined for almost all 2, as well as property
(i), is an easy conscquence of I'ubini’s theorem: sinee

I+ @I < [ 1t = 0l ol de

we have, using the periodicity of f,

Jhssp@lde < [ ([ 17 = ollg] dt) @

= [o@! ([, 1@ — 01ar) @
= [ 1ol 171l e = 151l lgllut

The remaining three properties follow from simple transfor-
mations of integrals and we omit their proofs.

The relation between Fourier transformation and convolution is
very simple and elegant:

Suppose f and g are periodic and in L0, 1), then for all integers 'k
(1.18) (f * DAY = JR)g(R).1

In order to sce this we use I"ubini's theorem and the periodicity
of the functions involved:

(f = g)NE) = j;]l (ﬁ)lf(x — gt (a’t)zz‘.;"f""t dx
= ﬂ)l g(f)e—2xitt (j:f(i? — {)e-2ikE—0 da:) dt

= [, ae=2efy at
= FR)IR).

t We are using the following version of Fubini’s theorem: If 2 > 0 is a
measurable function in the square {0 <z <1, 0 € ¢ < 1} and the iterated
integral [} (J§ h(z, 1) di) dx is finite, then h is integrable, [§ k(z, t) ¢ is finite
for almost every z and [§ (J§ hiz, O dO) dr = [§ (J§ h(z, ) dr) dt. We have
tacitly assumed, when A(z, 8) = |f(z_— Dg(0)], that h is measurable. We leave
the proof of this fact to the reader.

1 In general, we shall let ( )* denote the Fourier transform of the ex-
pression in the parentheses.
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It is this result, that the Fourier transform of the convolution of
two functions is, simply, the product of their Fourier transforms,
that malkes convolution play such an important role in the study
of Fourier series. This, as we shall sce, becomes clear very carly
in the development of harmonic analysis.

2. HARMONIC ANALYSIS ON THE INTEGERS
AND ON THE REAL LINE

Up to this point we have considered only functions that were
periodic of period 1. It is often uscful to think of such functions
as defined on the additive group of real numbers modulo 17 or on
the perimeter of the unit circle {z complex; z = €2} of the com-
plex plane. Consequently, the theory of Fourier series is often
referred to as the harmonic analysis associated with this circle, or
the reals modulo 1. Toward the end of this monograph we shall
describe how harmonie analysis can be associated to a wide varicty
of domains. In this section we shall consider two of these, the
integers and the entire real line. The harmonic analysis corre-
sponding to these domains is intimately connected with the theory
of Fourier series.

In the casc of the real line we obtain the theory of Iourier
integrals, a topic that is as important and as well known as the
theory of Fourier series. The harmonic analysis associated with
functions defined on the integers, however, is not generally studied
per se. The main reason is that its elementary aspects (but by
no means its deeper ones) consist of results that are essentially on
the surface. But precisely this property, this elementary nature

of the subject, makes its study very worthwhile for the non-

specialist as it provides a great deal of motivation for the theories
of Fourier series and integrals. Turthermore, some remarks about

1 If we say that two real numbers are equivalent when thei- difierence is an
integer we obtain a partition of the reals into equivalence clas:cs. Let [x], [y,
[z], - - - denote the equivalence classes containing the real numbers x, 4, z,
... . Then the additive group of real numbers modulo 1 consists of these
equivalence classes together with the operation defined by [z} + ] =

[z + ]
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this topic are necessary in order to understand better the general
picture of our subject. Accordingly, we shall not consider this part
of harmonic analysis in any detail, but will treat it briefly and use
it to motivate the introduction of the inverse Fourier transform,
which will enable us to consider the problem of representation of
funetions by their Fourier series from a more general point of view.
Also, we shall use it to motivate our introductory remarks concern-
ing Fourier integrals. We strongly urge the reader, however, to
find the analogs, for functions defined on the integers, of results
we shall present in the theories of Fourier series and integrals.

In the last section we started out with a periodic function
belonging to L'(0, 1) and obtained, by means of a certain integral,
a function defined on the integers, the Fourier transform. We then
asked if it were possible to obtain the original function from the
latter by means of a certain series, the Tourier series (1.1). This
indicates a duality between the interval (0, 1) and the integers and
it is not unreasonable to expeet that, by considering originally a
function defined on the integers, we can introduce, in analogy to
the Fourier transform, a periodic function by means of an ap-
propriate series. Furthermore, we should be able to recapture the
original function from this periodic function and a suitable integral.
Tt is only natural, in view of these remarks, to hope that this can
be done by interchanging the roles played by the interval (0, T)
and the integers. More explicitly, let us examine the result of
systematically replacing, in the definitions made at the beginning
of the last section,

e b 1 1 b 5
T T
L2, ﬁ,, L y o E.
the continuous variable z € (0, 1) by the integral variable & and
k by .

Let us consider, then, the integers as a measure space 1n which
each point has measure 1 and an integrable funetion, f, defined on
this measure space; that is, f satisfics

@2.1) k 3] < .

= —w
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The space of such integrable functions is usually denoted by It
Tor f in {* we introduce the periodic function f whose value at z is

(2.2) J@) = = f(jle-2=im

j=—w
We shall call f the Fourier transform of f in this case as well.
Because of the convergence (2.1) the series (2.2) converges uni-

formly; consequently, f is a continuous function. Corresponding
to the I'ourier series (1.1) we have the integral

(2.3) | fo ' F@)ezeite g,

But the uniform convergence of (2.2), allowing us to integrate
term-by-term, and the orthogonality relations (1.3) immediately
imply that

(2.4) ﬁ) et de = £(R).

We therefore see that in the present case we do not encounter any
of the difficultics described in the first section when we try to
express the original function in terms of its Fourier transform. This
illustrates the simplicity of the elementary aspects of the harmonic
analysis associated with the integers.

In particular, we sce that the mapping that assigns to f € 1 its
Fourier transform is one-to-one and, thus, it has an inverse. This
Inverse, in view of (2.4), has an obvious extension to all of L1(0, 1);
namely, the operator, called the inverse Fourier transform, that

_takes a function g in L'(0, 1) into the function § whose value at
E=0,241,+£2 ---is

(2.5) g(k) = ﬂ) L g()e2eits d,
We can, therefore, rewrite (2.4) in the following way:
(2.6) =1 -

whenever f belongs to I

These considerations lead us to a uscful and more general
restatement of the problem we studied in the last seetion concern-
ing the representation of functions by their Fourier series. Suppose
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we again interchange the roles played by the interval (0, 1) and
the integers; it is then natural to try to define the inverse Fourier
transform of a function, g, whose domain is the integers, by the
expression

(2.7) i@ = T _gE)er

When ¢ is in {! the series (2.7) is convergent and we obtain a well-
defined mapping, ¢ — ¢, from ' into the class of continuous
periodic functions. This mapping, however, is insuflicient for our
purposes. For example, in view of (2.6), we should expect that
whenever g is the Fourier transform of an integrable function f it
then follows that § = (f)* = f. But, because of Kolmogoroff’s
example of an integrable function with an everywhere divergent
Fourier series, this equality eannot be valid if we let § be defined
as the function which, at cach 2z (or at almost every z), satisfies
(2.7) in the usual sense (that is, the scquence of partial sums
ga(x) = ZH) g(k)e?i*x converges). On the other hand, using (1.7),

k=—-n
we do obtain an almost everywhere defined §(z) = ()¥(z) = f(2)
if we interpret (2.7) to mean that the (C, 1) or Abel means of the
series on the right converge to §{x). Similarly, if ¢ is the Fourier
transform of an f belonging to L*(0, 1), (2.7) gives us a well-defined
function § = f if we interpret the series on the right to be con-
vergent in the L2-norm. In each of these cases we obtain a mapping
which is an inverse to the TFourier transform mapping when the
latter is restricted to some important domain of funections (such
as L*0,1) or LY0, 1)). Thus, a general formulation of the
problem we discussed in the last section is the following: given a
class C of periodic functions for which the Iourier transform is

- defined, does there exist a mapping, g — ¢, defined on a class of

functions, whose common domain is the integers, such that (f)¥ is
defined for all f in € and (f)* = f? We shall refer to the problem
stated in this form as the Fourier inversion problem.

Let us now turn to the harmonic analysis related to the real line,
the theory of Fourier integrals. Suppose that f is integrable over
(=0, @), then its Fourier transform is defined for all real x by
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f@ = [7 roeina.

“The integral on the right is usually also called the Fourier integral.
Since the Tourier transform of a function defined on the entire
real line is again such a function it should not surprise the reader,
in view of our discussion in this section, that a good heuristic
approach for obtaining the basic notions and results in the theory
of Fourier integrals is to let the real line play the roles that the
interval (0, 1) and the integers played in the theory of Fourier
series. Let us examine the I'ourier inversion problem from this
point of view.

Motivated by the expressions (2.5), (2.6), and (2.7) we would
expect that the inverse Fourier transform of a function, g, defined
on the real line should be given by the formula

(2.8) gv(;lt) = f:‘; g(t)ezﬂ';l d't_,

and that for each f in L'(—=, %) we would then have (f)* = f.
Just as in the case of Fourier serics, however, we immediately
encounter the problem of giving relation (2.8) a suitable interpre-
tation. Though ?has several nice properties (the reader can easily
check that it is uniformly continuous and bounded; in fact,

@9 Wll.= sw @l < [7 150ld =il
—w L=

whenever f is in L'(—o, %)) it is not always true that it is inte-
grable. For example, if [ is the characteristic funetion, Xz, of
the finite interval (a, b) then

—%riza __ p—2xizh
(2.10) X(a,b)(:u) = Lb e~ 2wzt Jf = P—TL:— )
when z 5 0 and X 41)(0) = b — a. Here, as in the last section, we
obtain a satisfactory solution of the Fourier inversion problem if
we consider (C, 1) and Abel summability. We see this easily if we
let ourselves be guided by the above mentioned heuristic principle
of substituting the real line for the interval (0, 1) and the integers.
Let us first examine bricfly the case of Cesiiro summability.

If u is integrable in the intervals [—R, R], for all R > 0, the
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Cesaro means, or (C, 1) means, of f_: u(t) dt are defined by the

op = [_RR (l — %) u(l) dt.

We say that [_2 w(f) dt is (C, 1) summable to Uif lim o = L. It

R—w

integrals

is easy to see that if u € L'(—=, =) and its integral is ! then
op—>las R— .

Let us now consider the Cesiro means of the integral in (2.8)
when ¢ is the Fourier transform of an integrable function f. We
have

or(x) = f_R (1 — %) e2xirtf (1) dt

R

= [_RR (1 — %) g2rixt {f_: S (y)e— =ity dy} de

0 {I_RR (1 - l?i,l) e2ritle=1) a‘t} dy.

It is not hard to obtain a simple expression for the inner integral.
Using the fact that the sine function is odd and integrating by
parts we obtain:

(2.11)  Kx(0)

— & H!ﬂ 210t = 9 R( _i) 5] ]
= [f:e(l R)e dt _ﬁ) 1 7 ) cos (2wot) dt

R 1 sin (2#0f) It = 11— cos (2xR6)
o B 270 T 2rR g

=2

Consequently,

(212) oule) = [ J@)Kalx = 1) dy

1 @ 1 — cos (2xR{x — u))
= 5k |- (@ — ) &

Kx(0) is called the Fejér kernel and it satisfics the following three
basic properties:
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@) f_: Kr(6) do = 1;
(b) Kr(6) = 0;
(¢) for each 8 > 0, j:.a; - Kr() do — 0as R ——> w0,

The second property is obvious. The first property follows casily

from the well-knowu result: lim [ (sint/f) dt = =/2. To sce

N—w=

this we change variables and integrate by parts:

- = 1 — cos?2 o = o
f_mKﬂ(ﬂ) 5 2/_@1 S 1:1?9({8:1] 1 sgo%s

R(270)* )
. N1 — 2 .. N t
= £ lim f Lw*fﬁs ds = = lim f Bl ——dt = 1.
T N—= 0 8§ . T N—w 0

In order to prove (c) let us first observe that Kg(0) < 1 /R()2 (thus,

(2.13) max Kg(®) < 5 } max Loy 0
6] =

R g5 0°
as R — ). Consequently,

1 do 2
j;ngKR(B) < 5 s

loizs 8> R

If we replace (¢) by (2.13) we have three properties that are
completely analogous to the properties (A), (B), and (C) of the
Fejér kernel obtained in the periodic case. Precisely the same
argument that is used in establishing the theorem of Iejér (see
(1.6)) will then give us the corresponding result for I'ourier inte-
grals. We introduce property (c), however, to show how (C, 1)
summability can be used in yet another way in orcer to obtain a
solution of the Fourier inversion problem. More precisely, we shall
prove the following result:

as R — o,

(2.14) If f is integrable then the (C, 1) means

eil) = [ f (1 - %) 2] (1) dl = f_: FOR (= {) dt

—-R

of the integral defining the inverse Fourier transform of j converge to
fin the L' norm. That is,

: A ;
Ga€e L il aer conv ole oo /-/z,f-&frff'»?“_

elr L. !

f1 la  verr que

i JJ.}-” L,
fr‘k Ko (L
\  SEPRLS %u' Jioa
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lim ||f — oxlly = llm [_: lor(x) — f(x)] dx =0

R—=
It is convenient, at thls point, to introduce the L? modulus of
continuily of a function fin Lr(—occ, oc):

= FOa e oy ip
ap(@) = max U_w If e+ &) — )] (I.,%

It is an elementary fact that w,(8) — 0 as § —> 0 when
1 <p < w. For, given § > 0, we can write f = fi + f, where fi
is continuous, vanishes outside a finite interval, and || fa|[, < /3.
Thus, by Minkowski’s inequality,

| ueto —s@pat”
5 ;f_ww ffl{l ) = fl('z,)|r’ d.l't”p
+ %f::, [fale + )7 da }”p A U’_‘: )] d:c%””

Each of the last two terms is less than ¢/3; since f; is uniformly
continuous and vanishes outside a finite interval, the last term is
also smaller than ¢/3 provided ¢ is close enough to 0. Thus,
wp(8) < ¢/3 -t ¢/3 + ¢/3 = ¢if & is close enough to 0.

We now prove (2.14). Using the change of variables { = v — s
and property (a),

on(z) — 1) = [ [(@Krlx — 8)ds = f(2)-1

- f—i [fl@ — ) — Jx)JKx(1) dt.
Thus,

7 lone) = @l de = [~ 17 5@ = 0 = F@IKa(t) dil da

< [T 470G = 0 = @) Ke@) e}
ool @& = [ 1 - 0 - ) defKa @
= [yosl [V = 0 = )] daf e
+ [ e =0 = r@ldn KR

Db e
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The first of these last two terms is clearly dominated by

@) [, Keld) dt = on(d),

which tends to 0 as & tends to 0. The sccond term is majorized by
Juss 32 VG — Dl de + [ @) de Ko a
= 2|71l [, Kelt)

Thus, given ¢ > 0, let us first choose 8 > 0 so that wi(8) < ¢/2;
then, with this & fixed, property (c) can be used to find By > 0 so

that
fl 1o K dt < g

when B > Ro. This shows that

. Site < £+ AU
f_m[ag(x) fx) de < 2-i— 4‘““15 = ¢,
provided R > Ry, and (2.14) is proved.

We recall that in the case of Fourier series the Abel means
behaved very much like the (C, 1) means, yet an independent
study of them was of interest, particularly when we examined the
relation between the theory of Fourler series and the theory of
harmonic and analytic functions of a complex variable. This is
equally true for Fourier integrals; consequently it is worthwhile,
at this point, to devote a few words to Abel summability and its
relation to the Fourier inversion problem.

Guided by our heuristic principle of replacing the integers by the
real line and sums by integrals, we would expect the Abel means

of the integral fj u(l) dt to be defined by the expression
jjm () df with 0 <r < L. For technical reasons, which will

become apparent shortly, it is convenient to put r = e”%%,
0 < y < «; thus the Abel means of f_m u(l) dt have the form

Ay) = f:ﬂ e~ 2=ullly(f) di, y > 0,
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and we say that our integral is Abel summable to [ if lim

y—0-+

Aly) = L
Let us now examine the Abel means of the integral (2.8) when g
is the Fourier transform of an integrable function f. We then have

,ﬁ (2, 1) f_: e~ 2=utle2=ixtf (1) dt
- f‘” e—?wy!l‘cﬂriﬂ'i f_‘mf(s)e—mea dSE dt

= jm f(s) %f_um g~ 2mlllg2ritz—2) (If% ds.

As in the case of the (C, 1) means we can easily obtain a simple
expression for the inner integral:

2 —2aylllp2rit _ [ ® semiliz— O omi
f_m e yltlp2xitz (f _[0 g2=tliz v dt + f_w e2=tlz+v) Jf
1 1 1 ¥y

= 2n(y — %) + 2 (y -+ i) T ol + yz‘
Hence,

1 (= Y
2.15 f = - e
@15)  fay) = [T 10 Gy

= [75OPE — ) d

where |
(2.16) P, y) = =

72 4yt
fory > 0and —w <z < w. Pz, y) is called the Poisson kernel

and the integral (2.15) is called the Poisson tntegral of .
It is clear that result (2.14) still holds if we replace the Cesaro

means of the integral f :, F(t)e2=i=t dt by the Abel means, provided
we can show that the Poisson kernel satisfies

(a) f:ﬂ P(x, y) dx = 1;

) P, y) 2 0;

(c) for each 6§ > 0 f{’éﬁ, y) dg—0asy—>0.

A
|z| =38
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But the last two of these properties are obvious. Property (a’) is
also easy to establish: if we let s = a/y then
» 1 f= ds
Pz, y) dr = “f —
[Lr@wnde = [ 7T

o Ty & [tan™! N — tan~! (—N)] = L.

N—ox T
We note that the Poisson kernel is & harmonie function in the
upper half-plane {z = « + 7y; y > 0}. This can be seen either by

computing its Laplacian dircetly or by observing that it is the real
part of the analytic function

17 P
T ;L.z _| y‘z ST 3._’ yz
The imaginary part,

_1_=
Q(x) y) - T a? + yg’

is called the conjugate Poisson Lernel.

Now suppose f belongs to L'(—w, «) and is real-valued. Let
us form the integral

Q1) F@ = Fet+i) =1 [T 10 gy d

where y > 0 and —ew < 2 < e. It is easy to see that F is an

a{mlytic function in the upper half-planej and that its real part is
given b.y the Poisson integral of f. Thus the latter defines a
harmonic function in the upper half-plane. The imaginary part,

(2.18) ﬂaw=$[:ﬂ0@fﬁ¥r@“

= [". 1006 -ty @,

] TI’erlm_ps the easiest way of proving this fact is to use Morera's theorem:
given a simple closed contour € in the upper half-plane we can easily check

that
ch(z) dz = if_:f(t) {[C;%}dt = if:;f(.!)-()dt g

This then implies the analyticity of F. We leave the details of this argument
to the reader.
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is called the conjugate Poisson integral of f. We see from these
observations that there must be a strong connection between
Poisson integrals and the theory of harmonic and analytic func-
tions of a complex variable.

By now we have given a good deal of evidence that the theory of
Tourier integrals is not only intimately connected with the theory
of Fourier series but is very similar to it. This is indeed the case.
We shall see in more detail in the next section, for example, how
the L2-theory of Fourier integrals is as elezant as its analog, the
L2-theory of Fourier series, which we deseribed briefly in the first
section. We shall not, however, always discuss a result concerning,
say, Fourier series and then also deseribe the corresponding result
in the theory of Fourier integrals. On the contrary, we shall often
discuss an aspeet of harmonic analysis in one of the two theories,
but not in both. The reader should be aware that there exist
parallel results in the other theory as well. For example, the
operation of. convolution of two funetions in L'(—w, =) plays an
equally important role on the real line. Its definition is the
obvious one: if f and g are integrable on (—=, w), then f*g is
defined by :

)@ = [ 70yl — D dt

We leave it to the reader to check that (f =g¢) (z) is defined for
almost all real 2 and that the properties (i), (i), (iii), and (v)
announced in the first section hold in this casc as well. Morcover,
the argument that was used to establish the important relation
(1.18) between convolution and Fourier transformation can be
used, after some obvious changes, to show that the same relation
holds in the case of Fourier integrals.

3. ToE L! AND I} THEORIES

In the last two sections we introduced several concepts but have
not studied any of them very deeply. In this section we shall
examine in much greater detail the convergence and summability
of Fourier series, the Fourier inversion problem, and the L3-thcory.
Moreover, we shall describe some of the better-known theorems
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in the harmonic analysis associated with the real line and the
circle.

Let us begin with a closer look at the Fourier coefficients of an
integrable and periodie function f. We have seen that when f
belongs to L2(0, 1) the Fourier coefficients ¢, = f (k) satisfy Bessel’s
inequality (sce (1.5)). Thus, in particular,

Z et < =.

It follows, therefore, that ¢, — 0 as |k — . But this result is
true even when fis in L!(0, 1). For, suppose ¢ > 0, we can then
write f =g+ h where g is in L2(0,1) and [[A][y < ¢/2. Since
(h(k)] < ||All for k =0, 1, +2, .-, we have |f < g
+ ¢/2. Now, using the result just established for L2(0, 1), we can
find an N > 0 such’ that [§(k)] < ¢/2 if [k] > N. Thus, |f(L)]
< ¢/2 + ¢/2 = €if [k| = N. We have proved the following result:

(3.1) Tue RiEMANN-LEBESGUE J.HEORE.\I.' If fis an integrable and
periodic function then lim f(k) =
lkl— =
‘An immediate application of the Riemann-Lebesgue theorem is
the following convergence test for Fourier series.

. (3.2) Dixt Test: If a periodic and integrable funclion, f, satisfies
the condition

; vz |fle =) — f(2)
8.8) ,f—1/2 tan ¢ e = =
at a point x, then the partial sums s.(x) = % F(k)e2miks converge

k=—-n
to f(x) as n —> .

To see this we let g be the function whose value at t € (—1, 1)
is [f(x — &) — f(x)]/tan «t, then the integrability of f and condition
(3.3) imply that g is integrable. Using (1.9) and the fact that

f i JDa)dt =1

we have, forn > 1,
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su(a) — f(x)
1/2 qm @Cn A+ Dmt j’lﬂ
= [P re— o™ e - @) [, Do
[ , Sin (2n 4 - Dt
f 1/2 — J@); sin @

per'nf — ¢ —2xint

= [ -0 - 1wy {*

1/2

YoM
i
But it follows from the Riemann-Lebesgue theorem that this last
expression tends to 0 as n — «=. This proves (3.2).

The Dini test is probably the most uscful of the various con-
vergence criteria in the literature. One of its consequences is the
fact that the Fouwricr series of an integrable and periodic function
converges to the value of the function al cach point of differentiability.

tan =

2xint —2xint
e +e } dt

27 tan ¢ . 2

07211}11_'}-.( . ?l} ofs (,‘_’xfn:j(n)'
2

We sce this by first noting that, since lim = 1, condition

—0 wt

(3.3) is equivalent to the condition
, 12 | fle — 1) — f(2)
(3.3 J o P

1/2

dl < e,

But it is obvious that if fis differentiable at 2 then (3.3") must hold.

Before passing to the topic of summability of Iourier series we
state, without proof, what is probably the best-known convergence
test in the theory of Fourier series: '

(3.4) Tur Diricurer-Jorpax TusT: Suppose a periodic funclion
f is of bounded variation over (0, 1). Then
(a) the partial sums s,(x) converge to 3{f(x + 0) + f(x — 0)} at

- each real number x. In particular, they converge to f(x) at each point

of continuity of f;
(b) if f is continuous on a closed interval then s,(x) converges
uniformly on this interval.

We now pass to a more detailed study of summability of Iourier
series. Let us obscrve that in the proof of the theorem of Iejér
(result (1.6) restricted to Cesdro summability) we rcally have
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shown that the convergenee of e.(x) to f(z) is uniform in any
interval where f is uniformly continuous. From this we casily
obtain the following classical result:

(3.5) WEIERSTRASS APPROXIMATION THEOREM: Suppose f is a
continuous periodic function and ¢ > 0. Then there exists a trigo-
nometric polynomial T, thatl is, a finite linear combination of the
cxponentials e2*ms, n = 0, &1, £2, -+ -, such that

[F@) — T@)| <e for all x.

For we may take T(v) = o.(x) for n large enough since the
Cesiro means converge to f uniformly in this case.

One important consequence of these considerations is that the
system {e2*inz} 4s complete; that is, if all the Fourier coeflicients of an
integrable periodic function f vanish then f must be 0 almost cvery~
where. We first note that if f is continuous and f(k) = 0 for all
integers k then ¢,(x) = 0 for all n. But, since o,(x) > f(2) at all
x, we must have f(x) = 0. If f is merely integrable and periodic

we form the indefinite integral F(x) = ﬁ} “ f(f) d. The condition
F(0) = 0 implics that

Fe+ 1) — Fa) = fj*‘f(z) dt = ﬂ)lf(t) dt = 0.
Thus, F is a continuous periodic function. We claim that the
}lypothesis fy =0 for k= 41,42, 3, --- implies that
F(k) = 0fork = 1, &2, £3, ---. For, integratinw by parts,
—-211“

o ] 2mk f, s a

PO = j F(tye=2ikt dt = F(f) &

r0+f”) =0+0=0.
2wik
Trom this and the orthogonality relations (1.3) we then conclude
that the continuous and periodic function G whose value at 2 is
Fz) — # (0) must satisfy G(k) = 0 for all integers k. But we have
shown that this implies that G(z) = 0. Since, by Lebesgue's
theorem on the differentiation of the integral F'(x) = f(x) for
almost every z, it follows that 0 = G'(x) = I"'(2) = f(z) almost
everywhere. This proves the completeness of the system {e?=i7}.
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We' now show how to obtain the theorem of ILebesgue (see
result (1.7)) that asserts that the (C, 1) means of the Fourier
series of an integrable and periodic function converge almost every-
where to the values of the function. Inorder to do this we will have
to introduce the Lebesgue set of such a function f. We have just
used the well-known fact that F/(z) = f(z) for almost every

when F(z) = foxf(t) di. We can rewrite this fact in the following

way:
hnl}—f e+t —f@}yd=0
h—0
for almost every x. It turns out that a stronger result is true:
. 1 rh S .
(3.6) mhﬁ' Ifz+8) — f@)|dt =0

for almost every x. It is not hard to show this: For a fixed rational
number r let 77, be the set of all 2 such that

hmﬁ[ If G+ ) — | dt = |f(x) — 1|

fails to hold. Applying Lebesgue’s theorem on the differentiation
of the integral to g(f) = |f(z 4 ) — 7| we conclude that E, has
measure 0. Let £ = U B, the union being taken over all rational
numbers 7. Then E also has %&eé‘xéure 0. We claim that if = does
not belong to F then (3.6) holds. For let e > 0. Choose a rational
number 7o such that [f(z) — 7| < ¢/2. Then

1 r» 1 ra
L@t - f@lae <y [ 1@+ =l d
1 fa
+ ﬁfo |f(z) — ro| dt.
But the first term of this sum is less than ¢/2 if k is close to 0 while

]f|f(1) :0|dt<, 2d£=§f.
Thus
LM+ 0 - s@ld <

if A is small.
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The set of all 2 such that (3.6) holds is called the Lebesgue set of
f. We shall show that the (€, 1) means of the Fourier series of f
converge to f(x) whenever x is a member of the Lebesgue sct.

We shall need the following two estimates on the I'ejér kernel:

(a) K.(t) <n + L

b KD — ] 2 :“ here A is an absolute constant.

(n + 1)1,
The first one follows from the obvious estimate on the Dirichlet
kernel |Dx()] < 2k + 1:for

Knl)) = o 2,040 € g 2, @k + D)
_ Q!;Jr_ll' _
Sl n -+ 1.

The second one is a consequence of formula (1.10) and the well-
known fact lin BILG _ 1.
t—0 1
Now suppose « belongs to the Lebesgue set of f. As in the proof
of (1.6), we have, using property (A) of the Fejér kernel,
1/2 .
au@) = f@) = [[0 (@ = O — J@}KLQ) d.

Thus, using the estimates (a) and (b),

jow(@) = f@] < [T, 1 = 1) = F@IKLO at

S@+D [y TE@ =0 —J@Id
A |fx — 8 — f(2)|
+ n 4+ 1 1/ il <172 12 dt.

Given ¢ > 0let 3 > 0 be such that] flﬂ [fla —t) — f@)|dt <e

if b < & Then the first term in the above sum is less than e when-

ever (n -+ 1)7! < 8. Inorder to estimate the second term we write
1/2 ~(t D7
the integral as the sum of the two integrals [( 1y AN d f 1,:

We shall show that the first integral tends to 0 as n—— = ; a
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similar estimate will then show that the same is true for the sceond.
: B 4 ; Y 3 ;
TLet G(t) = j;] |f(x — s) — f(x)] ds. Then, integrating by parts,

we have

[l/z [flx — ) — fh)[
m+1) -l— 1) J1/a+n i
4, iGo m(;(r)
4n +1) Gl + 55 + 1wy e 4y —l— 1 e

The first and third terms tend to 0 as n — ., Since (1/[)(:’(1!) < e
for [¢{] < & the seecond term is dominated by

24¢e s dt
poretel )
2+ 1o e <73 de.

Thus, |e.(2) — f(x)] can be made as small as we wish by chbosing
n large enough. This proves the theorem of Lebesgue.

An application of this theorem is that we can reverse the in-
cquality in Bessel’s inequality (see (1.5)). Yor, if f& L2(0, 1)
C LY0, 1) and ¢, = J(R), k = 0, #1, &2, - -+, then the (C, 1)
means of f have the form

n l\ ]
a"(;r) - k:z‘in (1 B n l"’l l) Ckc?“h:.

Using the orthogonality relations (1.3) we have

1 <\|2 e e “‘l 2 o 9
-/; Io',i(.l)l dii= 3 (]. — m‘) lcklﬂ < kzzim |Ck|'-

k=—n

Since ¢,(x) — f(x) almost everywhere, Fatouw’s lemma implies
that

f |f(x)]2 dz < lim '/;1 |oa ()| da.

n— %

Consequently,
1 0
j; [f@)|2de < 3 e
k= —mw

'I_‘oget-her with Bessel’s inequality this gives us the following rela-
tion, known as Parseval’s formula:

(37) L @lde = 3 (fel
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We can also show casily that the partial sums of the Fourier
series of a function f in £2(0, 1) converge to f in the LZnorm,
We have already seen that they do converge to a function ¢ in
L2(0, 1) (sce the argument preceding (1.5)). This implies that ¢
and / have the same Fourier coefficients {e;} = {f(%)}; for

]01 g(De— 2kt df = [01 [g() — sa()]e—2=* dt + fol sa(f)e=2= dt.

The first term of this sum is dominated, in absolute value, by
llg — sallz (use Schwarz’s inequality) and, thus, tends to 0 as
n — . The sccond term equals ¢ as long as n > k. I'rom this
we conclude that the Iourier coeflicients of the function f — ¢ are
all 0. But, since the system {e*™<} is complete, this implies
f(@) — g(z) = 0 almost everywhere.

Let us observe that if we had started with a square summable

sequence {ci} (thatis, 2 |e? < ), then, by the orthogonal-
k

=—mn

ity relations (1.3), the partial sums s,(2) of 2 cwe?7™** converge

in the L2norm to a function ¢. The argument just used shows that
Gik) = exfor kb =0, &1, 2, -+,
We colleet these facts together in the following statement:

(3.8) Suppose f belongs to L2(0, 1) then its Fourier series converges
lo f in the L*-norm; that is,

17 = salle = ([ 1) = sae)f2 )"
- (joll fa) — k=§3-n f(k)cg”"""']? a'n:)”2

tends to 0 as n tends fo «. Furthermore,
1/2 @ = i 1/2
Wtk = (f vea) ™ = (5 wrE)" = 17k
k=—m

o
If a sequence {ci} satisfies 2 |ci|® < % then there exists a func-
k

f= — =

tion f in L0, 1) such that ¢, = j(k) for all integers k.

Iixcept for not having proved (1.7) in the case of Abel sum-
mability we have now established all the results announced in the
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first scetionzin-comection with the Fourier inversion problem.

We leave it to the reader to show that cssentially the argument
used above for Cesiro summability, using the cstimates

@) P@r, 1) <

1
= and
A =1

) Pl £ 55

1 . ;
=P <r % [C L anso-
e < 5 0<r<li, \\hcyd is an abso

lute constant,

gives us (1.7) in full.

As we stated toward the end of the last section, we shall not
essentially repeat all this material by giving the corresponding
results in the theory of Fourier integrals. The reader should have
no trouble, for example, in stating and proving the analogs of
results (1.6) and (1.7). Nevertheless, some discussion of what
happens when we carry over the above material to the case of
the real line is in order.

First of all, we cannot adapt the argument we gave to estah-
lish the Riemann-Lebesgue theorem to the case of functions in
L'(—, o). For one thing, we have not even defined the I'ourier
transform for functions in L*(—<, =); moreover, as we shall
see shortly after we define it, it is not true in general that fl@)—0
as |z] — « when f € L*(—=, ). We shall show, however, that
the Riemann-Lebesgue theorem does extend to the case of the
real line, and the simple argument we shall give can be adapted
to prove (3.1) as well. We shall prove

(3.9) Iff € L —w, ) then f(z) —> 0 as || —> .

Since
=@ = [7, (=Dez s dt

- f"“ e~ 2xixt—(/20] f(1) di

- fl ¢=2wirt f (t + 511) d,
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=g JZ s = s (e ) oo

w) (—j) —0 as v — =,

Let us now state the result that corresponds to (3.8):

(3.10) Twe PLaNCHEREL THEOREM: If | belongs to L(—=, »)
then there exists a function J, also in L} —=, =), such that

2@ = [2 ey af @ —s 0

as N—— ». The function [ is called the Fourier transform of f
and it agrees a.e. with the previously defined Fourier transform

‘whenever f &€ L'(—w, =) N L3(—w, ). Furthermore, Parseval’s

Jformula holds

171l = 1111l

Fourier tnversion is possible in the L -norm:

[oJrw = [ ey dxfl dt— 0

as N —> . Finally, each f in L¥(—w=, =) has the form [ = g for
an (almost everywhere) unique g in LY —w, =),

To prove (3.10) let us choose an fin LY (—w, %) N LY —=, =)
and form the convolution h = f = g where g(f) = J(=9). 1t follows
from the remarks made at the very end of Sec. 2 that k, being the
convolution of.two functions in LY==, =), is integrable and,
also, h(z) = j(z) J@) = [J@)Pr = o (by the real-line analog of
(1.18)). Moreover, we claim that 0 is a point of the Lebesgue set
of h; in fact, it is a point of continuity of k. For

1) =4O = [~ a6~ 0~ o-03700 af
= [[jm lod — 0 — 9’(—t){?(l£]”2||f”2_

But [[ﬁ: lg(6 — &) — g(—0)|2 d’t]”2 is dominated by the £? mod-

(3.12)

e e e e
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ulus of continuity evaluated at 6, e(8), of the function whose

value at ¢ is g(—{). Since the latter belongs to L2(—o, ®), we

can conclude that lim k() — A(0)| = 0. Consequently, the (€, 1)
30

means of the integral [ﬂ: h(x)e>ixt du, defining (h)"(x), converge
to A(¢) when ¢ = 0. That is, '

[_RR (1 = l}%l) h(z) dx — h(0).

But A(z) > 0 and the integrand in this integral increases mono-
tonically to h(z). Thus, by the Lebesgue monotone convergence
theorem & is integrable and

f_: h(z) dz = h(0).
Since h(0) = f_: FOF®) dt = ||f]|z and h = [F|? this shows

(3.11) [ i@k = [7 @)
Thus,‘ Parseval’s formula holds when f € L'(—w,») N L (—oo,
).

In particular, (3.11) tells us that the mapping f — f is bounded,
in the L%norm, as a linear operator on the dense subset L1 M) 1.2
of the Hilbert space L? into L2 It is well known that in such &

- case there exists a unique, bounded extension of the operator on

all of the Hilbert space. Using the same notation for this extension
we then can conclude that (3.11) holds for all f € L*(—w», w).

If we let xy be the characteristic function of the interval
[-=N,N] we set fy= xxf, for f& L*(—=,=). Then I E
L (=2, 0) NLA(—w%,») and ||f — ful —> 0 as N — @,
Because of the boundedness of the operator we have just defined
we then must have ||f — jy|l. — 0. This proves the first part of
(3.10).

The Fourier inversion part of Plancherel’s theorem follows
casily from the relation

2 1@ dx = [ jade) an
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whenever f, g € L*(—w«, »). The proof of (3.12) for functions in
I' N L? is straightforward; thus, we first cstablish (3.12) for fv
and gy and obtain the general result by letting N — . It is an
immediate consequence of (3.12) that

(3.13) =

for all f € L¥(—», ). For

17— e ={[ 7= [sr} =3[ sy = [ YOV
But both expressions in the brackets are 0; applying (3.12) to the
first one we obtain f fJ— f f”j:”, which is 0 by Parseval’s formula.

A similar argument shows the second expression is 0 also. Now,
because of (3.13) we have that f is the limit in the L*-norm, as
N — 0, of the functions given by the integrals

fva 6—2«1'::1‘7(0 dl = j:\N ez:,-;tf(t) dt.

By taking comple\ conjugates we have the Fourier inversion
result announced in (3.10).

The Iast statement follows from this inversion applied to g = f,
where f is the limit in 12, as N — o, of

[ gy de = Ty,

The material presented up to this point belongs to the founda-
tion of the theories of Fourier series and integrals. It is desirable
also to describe some of the directions in which harmonic analysis
has been developed. This subject, however, is so rich with results,
covering such a wide field of mathematics, that it is impossible
to present something that approximates a survey of the highlights
in the space that we have available. For this reason we shall,

. from time to time, sclect certain topics and present them, mostly
without proofs. The bases for our selections are the possibility of
extending these topies to other parts of harmonic analysis, the
simplicity of the concepts involved, and their applicability to
other branches of mathematics. We conclude this section with

what is perhaps the onc result that best fits this description, o-
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celebrated theorem of Wiener. As we shall see in See. 5, this
theorem extends to the harmonic analysis associated with any
locally compact abelian group, no new concepts are nceded to
understand it, and from it one can prove rather easily the prime
number theorem [4, p. 303]!

Suppose f belongs to L'(—<, «) then the collection of all finite
linear combinations of translates of f will be denoted by 7';. That
is, g belongs to T if and only if it has the form

(3.14) 0@) = 2 af@ + &)

for some finite set of real numbers ¢ and complex numbers a;.
The theorem of Wicner asserts the following:

(3.15) Suppose f belongs to LY(—=, ») and that f(x) is never 0,
then the closure, in the L! topology, of Ty is all of LN(—w, »). In
other words, any function in L'(—w,») can be approvimaled
arbitrarily closely in the L'-norm by functions of the form (3.14).

It is easy to find functions f whose IFourier transforms never

vanish. For example, the proof of (2.16), with y = 1, consisted,
1 1

simply, of showing that when f(t) = e~27 thenf(z) = = -y

That the condition f(z) ¢ 0 for all real x is necessary is clear.
Tor, if f(xe) = 0 for some 2, and g € 1 then g has the form
(3.14) and, thus,

6@) = = aerinf(a).

Therefore ¢(z) = 0. Now suppose h is in the L' closure of 7';

then there exists a sequence {g.; in Ty such that ||g, — A|[, — 0
as n——->«, Thus, by (2.9),
|a(20) — h(zo)]l < [lgn = Allo < llgn = Alli—>0
Since g.(x) = 0 for all n we must have h(z) = 0. We have shown
that the Fourier transforms of all h in the closure of 7'y vanish
at o. Since there are integrable functions whose I'ourier trans-
forms never vanish, this elosure cannot comprise all of L'(—e0, ).
We shall not give a proof of (3.15). We would like to point out,
however, that this proof uses strongly the fact that whenever
fE LY (—w,x) then the closure of 7 is a (closed) ideal in

as n ——»> w0,
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L(—=,«). By the term “ideal” we mean a linear subspace, 7,
of LY(—=,») such that g «h &I whenever g €1 and h €
LY(—w=, =).

An important class of ideals in L'(—o, =) is the collection of
closed maximal ideals (an ideal M is said to be maximal if it is
not contained in any proper ideal in L!'(—e0, «) other than 1/
itself). This class has a very elegant characterization:

(3.16) M s a closed maximal ideal if and only if there exists a real
number x such that M consists of all f & L'(—=,») such that

j@) =o.

Thus, we have a one-to-one correspondence between the real
numbers and the closed maximal ideals in L'(—e, «). We shall
denote the closed maximal ideal corresponding to x by M(x). It is
not hard to sec that the following is a generalization of Wiener’s
theorem:

(3.15")  Every proper closed ideal in L' (—<=, ») is contained in a
closed maximal ideal. :

For if f(z) is never 0 then f cannot belong to M (x) for any x.
Thus, the closed ideal obtained by taking the closure of T, cannot
be included in any closed 'maximal ideal. Consequently, this ideal
is not proper; that is, it must coincide with L'(—, «).

These considerations lead us to the formulation of a well-known
problem in harmonic analybiis, the problem of spectral synthesis.
If the closure of T/ is a proper ideal, [;, then, by (3.15"), it is con-
tained in a certain class of ideals M (z). It is easy to check that
the intersection of all closed maximal ideals containing I is a
closed ideal. The problem of spectral synthesis is to determine
for which f € L1(—e=, =) it is true that I, equals this intersection.
It has been discovered only recently (in 1959) that there arc
f € LY(—, =) for which I, is not equal to the intersection of all
maximal ideals containing it.

It is often useful to rephrase this problem in the following way:
For which f in L'(—o,®) is it true that if §(x) = 0 whenever
J(x) = 0 then g is in the closure of Ts?
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4. SOME OPERATORS THAT ARISE
IN HARMONIC ANALYSIS

Suppose Fi(z) = ap + aiz + @2 + - -+ + w.2" + - Is an ana-
Iytic function in the interior of the unit cirele. Suppose, further,
that F is bounded in this domain;say, |[F(z)] < B < = for |2 < I.
Let us write 2 = re??, 0 < r <1, 0 £ 0 < 1. Then, using the
orthogonality relations (1.3),

- - _ .
3 a2 = f ( ) ak,-ke'Zﬂkﬂ) ( ) (—m.x-c—-zm.-q) e
k=0 0 A\&=o0 k=0
1 3
= _/; |[FGre™)|2do < B> for0 <»r < 1.

Letting r—— 1 we therefore obtain }E} lar]* < =. By (3.8) we
k=0

thus can conclude that there exists an f belonging to £L2(0, 1) such
that f(k) = a;,, k= 0,1,2, - - - and f(£) = 0 forall negative integers
k. This shows that

F(?'eg'“’) e k)::oj(k)rkeﬂn'k? - kyﬁ f'(k)i""e'-”"“, 0<r <1,

are the Abel means of the Fourier series of f. By (1.7), therefore,

-]in’ll F(re*=®) = f(8) for almost every 6. In particular, we have
r— )

proved

(4.1) Yarou's Turorem: If I 1s a bounded analylic function in

the interior of the unit circle then the radial limits im F(re?=) exist
r—1

Sfor almost every 8 in [0, 1).

We shall use this theorem to define an important operator, the
conjugate function mapping, acting on integrable and periodic
functions. Suppose f is such a function. It follows from our dis-
cussion concerning the Poisson kernel and the conjugate IPoisson
kernel that the function & defined by

114 re2=id—t)

42) G =]; 1=yl d

— L Y PG, 0 — Of0) dt 4 [0‘ Q6 — (D) dt,



164 Guido Weiss

z = re??, is analytie in the interior of the unit cirele. We already
know that the first expression in the last sum has radial limits,
as r— 1, for almost all 8. The following theorem asserts that
this is also true for the second termn.

(4.3) Suppose f € L0, 1); then the limits, f(0), as r — 1, of

[, Qw0 — 05w a

1 2rsin 27 (0 — ¢
B ,/;) 1 —2rcos2a(8 — t) 4+ 1® 1) dt

exist for almost all 0.  The function f is called the conjugate function
of .1

By decomposing f into its real and imaginary parts and con-
sidering scparately the positive and negative parts of each of
these, we see that it suffices to prove (4.3) for f > 0. Thus,
letting A(r, #) be the Poisson integral and A (r, 8) the conjugate
Poisson integral of f, we obtain an analytic function for |z| < 1,

z"( (?', U)

I

z = r¢>® and its values lie in the right half-plane (by property

(B’) of the Poisson kernel). Thus,
F(z) = g— A0 —id(r,)

t If we let r —— 1 we obtain, formal]y,

_ f1__ 2sin2x(8 — 1 pA0)]
fo) - j; 2(1 — cos 27r(9 f(i) dt = ﬂ) 4 tan % (8 — 1) we

This last integral, however, is not defined even when f is an extremely well-
behaved function (for example, if f is constant and nonzero in a neighborhood
of # the integral fails to exist). One can show, however, that if we take the
principal value integral

() lim [ L8 dt
. e—0+ e<|o—1 4 tan 7?(0 ] t)
0=t<1

we do obtain a value for almost all 8. In fact, an argument not unlike that
used to prove (1.7) shows that the existence of these limits, as e =1 — r
— 0, is equivalent almost everywhere to the existence of the limits of (4.3).
One may take (*) as the definition of the conjugate function, therefore, and
avoid the use of analytic function theory. However, the real-variable proof of
the existence of f is by no means easy.
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is a bounded (|[F(2)| £ 1) analytic function in the interior of the
unit circle. By Fatou’s theorem (1.1) the radial limits of 7 exist
almost everywhere. Since the radial limits of A(r, §) also exist
almost everywhere and are finite (they equal f(8)), the limits of F
must be nonzero almost everywhere. But this implies the exist-
ence of lim A(r, #) for almost all 0, and (4.3) is proved.

r—1
The conjugate function mapping is obviously linear. If j &
L?(0, 1), then, using the fact that A(r, 8), 0 <r < 1,0 <0 < 1,
are the Abel means of the conjugate Fourier series of f and, also,
the result (3.8), we can show very easily that

@ W= 3 Vo< 2 1E= Ik

k=

Thus the mapping f——f is a bounded linear transformation
when restricted to the space L0, 1). One ean show, however,
that there are functions in L'(0, 1) for which the conjugate fune-
tion is not integrable. In particular, it follows that this mapping
is not bounded as an operator from L'(0, 1) into L'(0, 1). We do
have the following theorem, however.

(4.5) Turorem or M. Riesz: If f € L7(0,1), 1 < p < <, then
fE L 0,1)and

171> < Al111l

where A, depends only on p.

For exactly the same reasons that we gave in the proof of (4.3)
it suffices to consider the case f > 0. I‘utthel more, we clalm that
it is sufficient to show that

\

K

1, ~ 1 1
(4.6) me@p@gﬁof;mpm=%ﬁpmwm@

for 0 <r <1, where ¢, depends only on p. For, an argument
very similar to that used to prove (2.14), shows that the Poisson

~integrals A (r, 8) converge to f(8) in the L7(0, 1) norms. In partic-

ular,

HmE&WﬁP@=WM

r—1
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Since A(r, 0) — J(0) almost everywhere as » — 1, an applica-
tion of Fatou’s lemma then gives us the inequality ||J]|2 < e, llf]]4
from which the theorem follows.

To show (4.6) we argue in the following manner. Let

F(z) = A, 0) + 21(r, 0)
and let A = 8%/3a® 4 92/9y* denote the Laplacian operator. Treat-
ing A, A, and F as functions of x and y we have, by a simple cal-
culation which uses the Cauchy-Riemann equations (recall that #
is analytie),

A v =p(p — Ljdr|F AlF[p = pHF|=2[F"|%,
Let us assume, first, that 1 < p < 2. Then, since |F| > 4,
AlF|P < g Adr,

fora 44y =2 =re?? 0 <» <1,

2

and

where (1/q) =1 — (1/p). We claim that this inequality and
Green’s formula imply

L Y FGremyr do < g L YTAG, )] do

for 0 < r < 1, which certainly implies (4.6). The form of Green's
formula we need is the following. Suppose u is a continuous func-
tion defined in the unit circle which has continuous first and second
derivatives, S is the cirele {(z, y); 2* + y? <2 < 1} and C its
circumference. Then

fc ar ds = £ Au dx dy,

where 9/dr denotes differentiation in the direction of the radius
vector and ds = r df. Applying this formula to 2 = A7 and v =
|F|? we obtain, because of the inequality A|F|r < g Ad?,

/) (% |F(reﬂ’rfﬂ)1v) rdo<q ) (5‘1 (4G, a)]v) r do.

Thus, because of the smoothness of the funetions involved,

(%j:)l |F(re2=®)|» do < g; q j;)l Al(r, 0)]" de.

\
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Since F(0) = A(0,0) we obtain the desired inequality by inte-
grating with respect to r.

It remains for us to show that the theorem holds for p > 2.
But it is an easy excreise, using the fact that L» and L+ are dual
when 1/p 4 1/¢ = 1, to show that whenever a bounded operator
acting on L is given by a convolution, then it is defined on
L* and is a bounded operator on this space as well. The map-
ping f — A(r, 6) is such an operator and it satisfics

1, + 1
[ 1AG, 0 do < B, [ 140, 0l do < B,71151

for 1 < p <2 Thus, it satisfies this inequality for the indices
conjugate to p; that is, for p replaced by ¢ = p/(p — 1):

’ [, 1A, 0)ledo < Cal 1l

whenever f € L9(0, 1), ¢ > 2. But, by Fatou’s lemma, this implies
I 1., 4
[, F@lrao = ["tim |AG, o)l do < C.17]]g
r—1

and (4.5) is proved.

This development gives us a glimpse of the role that “complex
methods” (that is, the use of the theory of analytic functions of a
complex variable} play in the theory of Fourier serics.

Let us examine some more operators that arise naturally in
harmonic analysis. IFor example, let us study the Tourier trans-
form mapping acting on functions defined on the entire real line.
Inequality (2.9) tells us that it is a bounded transformation de-
fined on L!'(—o,«) with values in L=(—<, «). The Plancherel
theorem (3.10) tells us that it is a bounded transformation from
L*(—e, ) into itself. A natural question, then, is whether it
can be defined on other classes .7 and, if so, whether we obtain a

T One can give several direct proofs of the inequality

1 1
Jlueoraos [firorap 2.

Since it is an immediate consequence of Young's inequality (4.8) (for ¢(8)
= P(r, 8) defines a function in L' and A(r, 8) = (g #f)()) we will not prove
it here.
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bounded transformation with values in some classes L2 But any
function in L, 1 < p < 2, can be written as a sum of a function
in L' and one in L put f = fi + f5, where fi(x) = f(x) when
|f@)| <1 and fa(x) = 0 otherwise; then fi € L' and f; € L2
Thus, we can write f = fi + fs, where fi is defined as the Fourier
transform of a function in L! while f; is defined by (3.10). The
fact that these two definitions agree when a function belongs to
L' N L* implies that j is well defined. The following theorem
tells us that Fourier transformation defined on LrP(—w,*),
1 < p < 2, is bounded as a mapping into L?(—, e« ), where ¢ is
the conjugate index to p.

(4.7) Tue Hauvsporrr-Youxc THEOREM: If f €& LP(—w,»),
1<p <2, then J € Lo(—w, =), where 1/p + 1/q = 1, and

17 1le < 11F1:

We shall not prove (4.7) immediately. Instead, we shall give
examples of some other inequalities that oceur in harmonic analy-
sis and then state some gencral results from which all these
inequalities, including (4.5) and (4.7), follow as relatively easy
consequences.

1 1 1 1 1
4, "ouxG's THEOREM: Suppose = = = + = — 1, where = 4 =
(4.8) Youx (p1 s + ” b1

> 1. Iff€ Lr(—=,=) and g € Li(—, ) then f * g belongs to
Lr(—e,«) and

17 = gll- < 7 1allglle-

The same result holds for periodic functions if we replace the interval
{—w, ) by the interval (0, 1).

The operator on functions defined on (—=, «) that corresponds
to the conjugate function operator satisfies the same inequality
(4.5). Using (2.18) and arguments that are completely analogous
to those we gave at the beginning of this section, we sce that this
operator, called the Hilbert transform, can be defined by letting

- . e . 1 ® r—1
fl@) = uljgi f@,y) = UL“JL - f_w f C—0+7 dt
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correspond to f & Lr(—ew, ), 1 < p, and that the following
result holds:

(4.9) Iff € Lr(—=»,»), 1 < p < o, then its Hilbert transform |
also belongs to Lr(—w, «) and

Flls < ALlIS]ls,
where A, depends only on p.

All the operators we have encountered up to this point are
linear. There are several important transformations in harmonic
analysis, however, that are not linear. Perhaps the best-known
example of such a transformation is the Hardy-Littlewood maximal
funection. This operator is defined in the following way: if f &
Lr(—o, @), 1 < p < o, then its maximal function is the function
whose value at © € (—=, @) is

f*@) = iligl_lz LIH |f(0)] dt.

Lebesgue’s theorem on the differentiation of the integral guar-
antees that f*(x) < « for almost every =. It can be shown that

4.10) IffE Lr(—w, ), 1 <p < »,thenf* € LP(—w, =) and
17#]le < AllF1]

where A, depends only on p.

The usefulness of the maximal function lies in the fact that it
majorizes several important operators, Thus, it is clear why a
theorem like (4.10) is desirable, as it immediately implies the
boundedness of these operators.

Although the mapping f—— f* is not linear, it does satisfy
the inequality (f+ ¢)* < f* 4 ¢* This property is generally
referred to as sublinearity. More generally, we say that an oper-
ator 1" mapping functions into functions is sublinear if, whenever
Tf and Tg are defined, so is T(f -+ ¢) and

17(f + g)| < |71 + [Tgl.

In all these instances special cases of the inequalities involved
are fairly easy to establish. Ifor the conjugate function mapping
the case p = 2 was scen to be an easy consequence of Theorem
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(3.8) (sec (+.4)). A similar argument, using the Plancherel the-
orem, shows that the same is true for the Hilbert transform. We
have pointed out that the eases p =1, ¢ =« and p = 2 = g of
the Hausdorff-Young theorem had already been obtained by us in
the previous sections. The inequality ||f * gl < [|f1lllgll;, which
was the first result (property (i)) we established after introducing
the operation of convolution, is the special case r = p = ¢ = 1 of
Young's theorem. Another special case of this-thcorem that is
immediate is obtained when p and ¢ are conjugate indices, 1/p +
1/¢ = 1, and, thus, r = = ; for this is simply a consequence of
Holder’s inequality. IFinally, it is clear that (4.10) holds when
P = ®,

It was M. Riesz who first discovered (in 1927) a general prin-
ciple that asserted, in part, that in a wide variety of inequalitics
of the type we are discussing, special cases, such as those described
in the previous paragraph, imply the general case. In order to
state his theorem, known as the M. Riesz convexity theorem, we

need to establish some notation. Suppose (M, i) and (N, v) are |

two measure spaces, where M/ and N are the point scts and p
and v the measures. An operator T mapping measurable functions
on M into measurable functions on N is said to be of ype (p, q)
if it is defined on L7(M) and there exists a constant A, independent
of f € Lr(M), such that

@iy il = ([, 1mrlea) " < a ([, 151 de)™ = alifll,

The least A for which (4.11) holds is called the bound, or norm, of
T. The general principle can then be stated in the following way.

(4.12) Tue M. Riesz Coxvexiry TueoreM: Suppose a linear
operator T s of types (Do, qo) and (py, qu), with bounds Ay and A,
respectively. Then it is of type (pe, qo), with bound A, < Ay~'44,
Jor 0 <t < 1, where

1 1 — ¢ i 1 1—1 1

— = - and ~ — = + -
P Po 41 qe To N

The Hausdorff-Young theorem is an immediate consequence of
this result. Since T':f — f is of types (1, ») and (2, 2), it must
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be of type (_'2;_&, %) for 0 <t <1 Butif p = ‘L: then the

2 2—1
el oo
—1

=~ 1D

conjugate index is g = . Since the “end-point’” (i
q 1 1.C.

t = 0and ¢t = 1) bounds are 1, we have

”f”q < 1a-op(fll, = Hf“m

which is the inequality in (4.7).

Similarly, Young’s theorem follows from (1.12). First, let us fix
g € L' and define 7f = f*g. We have scen that 7' is of type
(1, 1), with bound |lg||;, and of type (%, ), also with bound

. . 1 .
llgll. Thus, 7' is of type (1 —7 ﬁ)’ 0 <t <1, with a bound
less than or equal to |[|g|[i ~'[lglli = |lg|li. Putting p = -1—%_7 this

gives us (4.8) with » = p and ¢ = 1. To obtain the general case
we fix f € L7 and define T'¢ = [+ g. We have just shown that 7'
is of type (1, p) with bound [|f]],. Letting ¢ € L2, where ¢ is con-
jugate to p, we also have 7 of type (q, =) with bound ||f|[,. Thus,
T is of type (p, g, with bound no greater than ||f]|,, where

) %
P = 2;—-?—-“—-’;' and qe = 17—_)—{ 0 S { S 1 (.Fhat IS,

1S glle < 11711011l

Since it follows immediately that% = }) -} % — 1, and, as { ranges
t ¢

1 1
between 0 and 1, » + ; ranges from ;1) + 1 to 1, this is precisecly
£

the inequality of (4.8).

Unfortunately none of the other inequalitics we stated can be
derived from the special cases discussed above and the M. Riesz
convexity theorem. Ior example, the conjugate function mapping,
as we have seen, is easily scen to be of type (2, 2). Were we able
to show that it is of type (1, 1) it would then follow that it is of
type (p, p), 1 < p < 2, and this, in turn, would imply the result
for p > 2 (as we saw at the end of the proof of (4.5)). But we
have already stated that this operator is not a bounded trans-
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formation on L'(0, 1). Nevertheless, there is a substitute result,
due to IXolmogoroff, and an extension of the M. Riesz convexity
theorem, due to Mareinkicwicz, that does allow us to obtain
Theorem (1.5) much in the same way we obtained (4.7) and (4.8).
TFrurthermore, this method is applicable to Theorems (4.9) and
(4.10) as well.

The substitute result of IKolmogoroff is a condition that is
weaker than type (1, 1). We shall consider this condition in a
more general setting. IFirst, however, we need to introduce the
concept of the distribution function of a measurable function.
Let g be a measurable function defined on the measure space
(N,»)and, fory > 0, E, = {x € N; |g(z)| > y}. Then the distri-
bution function of g is the noninereasing function A = A, defined
for all y > 0 by

Ay) = v(B,).
It is an easy exercise in measure theory to show that if ¢ &€ Li(N)
then

413)  lglle = (f» lg(2)le d’V)”q = (q ﬁ, YY) dy)”q'

Suppose, now, that 7" is an operator of type (p, ¢), with bound
4, 1 < g < », mapping functions defined on M into functions
defined on N. Let f & Lr(AM), g = Tf, and ) the distribution
function of g. Then

@) = [yrrd < [, o@lidr < [ lg@lear

< (a[[f, ol au]™)"

. That is,

(4.14) M) = 20) < (S1171,)"

This condition is easily seen to be weaker than boundedness. An
operator that satisfies (4.14) for all f & Lr(M) is said to be of
weak-type (p, ¢). If ¢ = « it is convenient to identify weak-type
with type.

Kolmogoroff showed that the conjugate funetion mapping is of

P R i o o P Y P T
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weak-type (1, 1). It is then immediate that the following theorem
can be used to prove (4.5):

(4.15) Tue MarciNkiEwIcz INTERPOLATION THEOREM: Suppose
T is a sublincar operator of weal: types (po, @) and (py, q), where
1< pi<giL o fori=0,1, and q # q, po # pi. Then T is of
type (p, q) whenever

L_l=t & o L. 1=d4,1

p Do n q Qo O
0<t<1.

Similarly, the Hilbert transform can be shown to be of weak
type (1, 1); thus (4.9) is also a consequence of (4.15). The same is
true of (4.10). We shall not prove any of these facts. The reader,
however, should have no difficulty in checking that the maximal
function mapping cannot be of type (1, 1) (take for f the character-
istic function of a finite interval; then f* is not integrable). The
proof that it is of weak type (1, 1) is not hard. The corresponding
results for the conjugate function and for the Hilbert transform,
however, are somewhat more difficult.

The M. Riesz convexity theorem and the Marcinkiewiez in-
terpolation theorem have many more applications. The examples
discussed in this scction, however, are sufficient to illustrate the
role they play in harmonic analysis.

5. HARMONIC ANALYSIS ON LOCALLY
COMPACT ABELIAN GROUPS

We have discussed harmonic analysis associated with three
different domains, the circle group {or the group of reals mod-
ulo one), the group of integers, and the (additive) group of real
numbers. All of these are examples of locally compact abelian
groups. Thesc are abelian (commutative) groups @, with elements
x, Y, 2, - -+, endowed with a locally compact Hausdorff topology in
such a way that the maps v — 2! and (x, y) — 2y (defined
on ¢ and ¢ X @, respectively) are continuous (we are following
the usual custom of writing the operation on ¢ as multiplication
and not as addition—which was the case in our three examples;
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this should not be a source of confusion to the reader). In this
scetion we shall indicate how harmonic analysis can be extended
to functions defined on such groups.

On each such group @ there exists a nontrivial regular measure A/
that, in analogy with Lebesgue measure, has the property that it
is invariant with respeet to translation. By this we mean that
whenever 4 is a measurable subset of ¢ then m(4) = m(Ax) for
all x € G. This is equivalent to the assertion

(5.1) [ £ dmy) = [, 5(0) dmG)

for all x € G whenever f is an integrable function. It is obvious
that any constant multiple of m also has this property. Conversely,
it can be shown that any regular measure satisfying this invariance
property must be a constant multiple of m. Such measures ave
known as Haar measures.

The operation of convolution of two functions f and ¢ in L'(G)
is defined, as in the classical case, by the integral

()@ = [, @ g dy.

The four properties (i), (i), (iii), and (iv) (see the end of the first
seetion) hold in this case as well. In particular, f + g € L'(G) and
I1f =gl < £ 1]l

Moreover, we shall now show that it is possible to give a defi-
nition of the Fourier transform so that (1.18) also holds; that is,
(f % g)* = Jg forall fand g in LY((7). We have seen that the Fourier
transform of f is not usually defined on the domain of f. In case
of the circle group, for example, Fourier transformation gave us

~ functions defined on the integers. In order to describe the gen-

eral situation we shall need the concept of a character: By a
character of a locally compflct group (' we mean a continuous
function, : #(x)] = 1 for all x in ¢ and 2(xy) =
2(2)2(y) f01 all z, y & G.

The collection of all characters of G is usually denoted by G.
If we define multiplication in G by letting fide () = &1(2)d(x),
for all 2 € G, whenever &, & & (" G then becomes an abelian
group. We introduce a topology on G G by letting the sets

ey s o

HARMONIC ANALYSIS 175

Ule, C, 1) = {£ € G;|2(x) — £(2)| < ¢, 2 € CY,
where &y € ¢, ¢ > 0, and C is a compact subset of (7, form a basis.
With this topology (7 is then also a locally compact abelian group.
G is usually called the character group of G or the dual group of G.

For example, when G is the group of real numbers we easily sce
that if we let a be a real number, then the mapping #: 2 —— grwiax
defined for all real a, is a-character. One can show that all char-
acters are of this type. Thus, there is a natural one-to-one cor-
respondence between the group of real numbers and @. IFurther-
more, this conespondence is a homeomorphism. Henece, we can
ldentlfy G with @ in this case.

If G is the group of reals modulo 1 the mappings #: @ — ¢?riaz,
2 € G, where a is an integer, ave characters, and each character
has this form. Thus, ¢ and the integers are in a one-to-one cor-
respondence that, in this case also, can be shown to be a homeo-
morphism. Therefore, we can identify @ with the integers. Sim-
ilarly the dual group of the integers can be identified with the
group of reals modulo 1.

Ingeneral,if we fix an 2 in (7 and consider the mapping & — #(x)
we obtain a chalactel on (. Tt can be shown that every character
has this form and that this correspondence between @ and (G)*
is & homeomorphism. This result is known as the Pontrjagin
duality theorem and it is usually stated, simply, by writing the

equality ¢ = (G)*. Because of this dmht}, the functional notation
£(x) is disearded and the symbol
(x, £)

is used instead. Thus, (z, ) may be thought of as the value of the
function x at £, 2(£), as well as the value of £ at 2; these, two values
are clearly equal.

It is now clear, if we let ourselves be motivated by our three
classical examples of locally compact abelian groups, that a nat-
ural definition of the Fourier transform for f € LYG), when G is
a genceral locally compact abelian group, is to let it be the function
fon G given by

j@ = |, 1) &, 8 dnz).
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Many of the results we [)IC\Cllth in the previous seetion hold
in this case as well. For example, f is a continuous function on G
when @ is not compact the Riemann-Lebesgue theorem holds:

(5.2) If G is not compact, f € LNG), and € > 0, then there exists
a compact set C C G such that |J(£)| < eif 4 is outside of C.

The basic relation (1.18) between convolution and IFourier
transformation is true in general:

(3.3) If f and g belong to L\G) then (f * g)" = J4.

Wiener’s theorem (3.15) is still valid:
(4) If f € LNG) and J(£) is never 0 then any g € LY(G) can be
approximated arbilrarily closely in the L'-norm by functions of the
Jorm

2 ﬂkf(iliik),

where the ai's are a finite collection of complex numbers and the t’s
belong to G.

The Plancherel theorem also has an analog to this general case:

(5.5) If we restrict the transformation f—)f to LY (@) N L¥G)

then the L® norms are preserved; that is, f € 12(G) and Parseval’s
Sormula holds.

il = 171l
Furthermore, this transformation can be extended to a norm preserving
transformation of L*(G) onto L*(G).

Harmonic analysis can be generalized still further. For exam-
ple, locally compact groups that are not abelian are associated
" with important versions of harmonic analysis (the theory of
spherical harmonics is associated with the group of rotations in
3-space). We will not, however, pursue this topie further.

6. A SHORT GUIDE TO THE LITERATURE

So many books and papers have been written in harmonic
analysis that no attempt will be made here to give anything like

a comprehensive bibliography. Rather, our intention is to give
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some very brief suggestions to the reader who would like to pursue
the subject further.

All that has been discussed here concerning Ifourier series is
contained in A. Zygmund’s two-volume 7'rigonometric Series [10].
This scholarly book contains essentially all the important work
that has been done on the subject. Anyone seriously interested in
classical (or, for that matter, modern) harmonic analysis would
do well to become acquainted with it. It is often worthwhile,
however, to read a short treatment of a subject when learning it.
R. R. Goldberg’s Fourier transforms [3] does an excellent job of
presenting that part of Fourier integral theory that generalizes to
locally compact abelian groups. In this book the reader will find
a proof of Wiener's theorem and a more thorough discussion of the
problem of spectral synthesis. For more comprchensive treat-
ments of Fourier integral theory we refer the reader to S. Bochner’s
Lectures on Fourter Integrals [2] and I, C. Titchmarsh’s The Theory
of the Fourier Inlegral [8).

The literature dealing with the more abstract forms of harmonic
analysis is also very large. Pontrjagin’s classic Topological Groups
[6] is still highly recommended reading. The same is true of
A. Weil’s L'intégralion dans les groupes lopologiques el ses applica-
tions [9]). Two very readable modern works that treat the subject
of harmonic analysis on groups are Rudin’s Fourier Analysis on
Groups [7) and Abstract Harmonic Analysis by Hewitt and Ross
[5]. We also recommend an excellent survey on this subject by
J. Braconnier [1].
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TOEPLITZ MATRICES

Harold Widom

1. INTRODUCTION

Otto Tocplitz is one of the few mathematicians who has had
his name attached to two distinet mathematical objects. What
is espeeially unusual in the case of Toeplitz is that these objects
have exactly the same name: T'oeplitz matriz.

The more famous Tocplitz matrices are associated with pro-
cedures for attaching “sums” to divergent series. We shall not
mention them again. As far as we are concerned a Toeplitz
matrix is an array of complex numbers d

‘-' Cop C1 €C.o C_3
& C1 € c; C_2

C: O Co Cc_y
C3 C2 €1 Co

What distinguishes such a matrix is that cach diagonal has equal
179




