

Departamento de Matemáticas

Profs. Francisco Balibrea • Bernardo Cascales

EDP y Análisis de Fourier Curso 2013-14

Autoevaluación continua: ejercicios propuestos/resueltos a diario

- 1. (30-Enero-2014) Dada $f:[-\pi,\pi]\to\mathbb{C}$ integrable, probar que para su serie de Fourier se tiene:
 - a) $\sum_{n \in \mathbb{Z}} \hat{f}(n)e^{inx} = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx);$
 - b) si f toma valores reales, entonces los coeficientes a_n y b_n son reales.
- 2. (17-Febrero-2014) Obtener la serie de Fourier de

$$f(x) = x$$

para $x \in [-\pi, \pi]$.

3. (18-Febrero-2014) Obtener la serie de Fourier de

$$f(x) = \frac{(\pi - x)^2}{4},$$

para $x \in [0, 2\pi]$.

4. (18-Febrero-2014) Obtener la serie de Fourier de

$$f(x) = \frac{\pi}{\sin \pi \alpha} e^{i(\pi - x)\alpha},$$

para $x \in [0, 2\pi]$ y $\alpha \notin \mathbb{Z}$.

- 5. (18-Febrero-2014) Utilizar el desarrollo en serie de Fourier de las funciones dadas en los ejercicios 2, 3 y 4 para demostrar respectivamente que:
 - a) $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$
 - $b) \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$
 - c) $\sum_{n=1}^{\infty} \frac{1}{(n+\alpha)^2} = \frac{\pi^2}{\sin^2 \pi \alpha}$
- 6. (21-Febrero-2014) Sea $(H,\langle\cdot\rangle)$ un espacio de Hilbert. Probar que apra cada $y\in H$ la aplicación $x\to\langle x,y\rangle$ es lineal continua y de norma $\|y\|$.
- 7. (28-Febrero-2014) Para $N \in \mathbb{N}$ se define

$$D_N(x) := \sum_{n=-N}^{N} e^{inx}, \text{ para } x \in [-\pi, \pi].$$

Probar que:

a)
$$D_N(x) = \frac{\sin((N+1/2)x)}{\sin(x/2)}$$
 para $x \in [-\pi, \pi]$.

b)
$$\int_{-\pi}^{\pi} |D_N(x)| dx \ge \frac{4}{\pi^2} \sum_{k=1}^{N} \frac{1}{k}$$
.

(A la sucesión D_N se le llama núcleos de Dirichlet, y desempeña un papel importante para mostrar la existencia de funciones continuas 2π -periódicas con serie de Fourier puntualmente divergente) Si $k \in L^2([a,b] \times [a,b])$, entonces la fórmula

8. (12-Marzo-2014) Si $k \in L^2([a,b] \times [a,b])$, pruébese que la fórmula

$$Kf(t) := \int_{a}^{b} k(t, s) f(s) \, ds$$

define un operador acotado $K: L^2([a,b]) \to L^2([a,b])$ (llamado operador integral con núcleo k), que satisface

$$||K|| \le \left(\int_a^b \int_a^b |k(t,s)|^2 dt ds\right)^{1/2}.$$

9. (12-Marzo-2014) Pruébese que la ecuación diferencial en [a,b] con condiciones iniciales $x(a) = x_a \in \mathbb{R}, x'(a) = x'_a \in \mathbb{R}$

$$-x''(t) + q(t)x(t) = 0$$

donde $q:[a,b]\to\in\mathbb{R}$ es una función continua, tiene una única solución.

- 10. Pruébese la fórmula que da la solución de una ecuación de Fredholm cuando $\lambda = \lambda_m$.
- 11. Pruébese que si la función k en el ejercicio 9 satisface

$$k(s,t) = \overline{k(t,s)}$$
 para cada $s,t \in [a,b] \times [a,b]$,

entonces el operador K es autoadjunto, es decir,

$$\langle Kf, g \rangle = \langle f, Kg \rangle$$
, para cada $f, g \in L^2([a, b])$.

- 12. Sean a_0, a_1 y b_0, b_1 en \mathcal{K} . Pruébese que existe una función $f \in C^1([a, b])$ tal que $f^(i)(a) = a_i$ y $f^(i)(b) = b_i$. ¿Cómo plantearías el ejercicio para funciones de clase C^n ? ¿y para funciones de clase C^∞ ?
- 13. Si K es un operador como en el ejercicio 12 y $(e_n)_n$ es una base hilbertiana de $L^2([a,b])$ formada por vectores propios de K con valores propios asociadaso (λ_n) , pruébese que

$$\sum_{n} \lambda_{n}^{2} = \int_{a}^{b} |k(t,s)|^{2} dt ds \Big)^{1/2}.$$

- 14. Pruébese la fórmula que da la solución de un sistema de Sturm-Liouville cuando $\mu = \mu_m$.
- 15. Resolver el sistema de Sturm-Liouville en [0, 1] dado por la ecuación

$$-x'' - \mu x = y$$

bajo las condiciones frontera:

a)
$$x'(0) = 0 = x'(1)$$
;

b)
$$x(0) = 0 = x'(1)$$
.

16. Pruébese que si $f \in L^1[-\pi,\pi]$ y $(K_n)_n$ es un núcleo de sumabilidad entonces,

$$\left\| \frac{1}{2\pi} f * K_n - f \right\|_1 \to 0$$
, cuando $n \to \infty$.

17. Para una serie formal $\sum_{n=0}^{\infty} a_n$ en \mathbb{K} si denotamos por $S_n := \sum_{k=0}^n a_k$. Decimos que $\sum_{n=0}^{\infty} a_n$ es sumable Cesàro si existe

$$\lim_N \sigma_N \in \mathbb{B}.$$

Pruébese que si $\sum_{n=0}^{\infty} a_n$ es convergente entonces es sumable Cesàro y se tiene que $\sum_{n=0}^{\infty} a_n = \lim_{N} \sigma_N$. Pruébese que el recíproco no es cierto.

18. Se
a $k=1,2,\ldots$ y $f:[-\pi,\pi]\to\mathbb{K}$ de clase C^k y
 $2\pi\text{-periódica}.$ Pruébese que existe C>0talque que

$$||S_N f - f||_{\infty} \le \frac{C}{N^{k-1/2}}$$
, para cada $N \in \mathbb{N}$.