

Funciones de Variable Compleja. Hoja de problemas 1.

27 de Septiembre de 2011

1. Ejercicio

Pruébese que si a, b son números complejos se verifica la identidad del paralelogramo

$$|a+b|^2 + |a-b|^2 = 2(|a|^2 + |b|^2).$$

Como aplicación obténgase el mínimo valor de $|z-a|^2+|z-b|^2$ cuando a y b están fijos y z varía en \mathbb{C} .

2. Ejercicio

Pruébese que:

a)
$$|a - b| < |1 - \overline{a}b| \ si \ |a| < 1 \ y \ |b| < 1;$$

b)
$$|a - b| = |1 - \overline{a}b| \ si \ |a| = 1 \ \delta \ |b| = 1.$$

3. Ejercicio

Determínense geométricamente los siguientes subconjuntos de \mathbb{C} :

a)
$$\{z : \text{Im } (\frac{z-a}{b}) = 0\}, \{z : \text{Im } (\frac{z-a}{b}) > 0\}, a, b \in \mathbb{C};$$

b)
$$\{z : \operatorname{Re}\left(\frac{z}{b}\right) = 1\}, \{z : \operatorname{Re}\left(\frac{z}{b}\right) > 1\}, b \in \mathbb{C};$$

c)
$$\{z: |z|^2 - \text{Re}(\overline{a}z) + \alpha = 0\}, \ a \in \mathbb{C}, \ \alpha \in \mathbb{R};$$

d)
$$\{z: |z-a| = \alpha |z-b|\}, \ a,b \in \mathbb{C}, \ \alpha > 0;$$

e)
$$\{z: |z-a| = |1-\overline{a}z|\}, |a| < 1.$$

4. Ejercicio

Pruébese la igualdad de Lagrange (para números complejos):

$$|\sum_{1 \le i \le n} a_i b_i|^2 = (\sum_{1 \le i \le n} |a_i|^2) (\sum_{1 \le i \le n} |b_i|^2) - \sum_{1 \le i < j \le n} |a_i \overline{b_j} - a_j \overline{b_i}|^2$$

5. Ejercicio

Circunferencias en el plano complejo:

a) Pruébese que la forma general de la ecuación de una recta o circunferencia del plano complejo es

$$A\overline{z}z + Bz + C\overline{z} + D = 0$$
,

donde los coeficientes A y D son reales, B y C son complejos conjugados y AD - BC < 0 (Cuando A = 0 se obtiene una recta, y cuando $A \neq 0$ resulta una circunferencia de centro $z_0 = -C/A$ y radio $\rho = \sqrt{BC - AD}/|A|$).

b) Sean C_i , i=1,2 dos circunferencias en el plano complejo de ecuaciones respectivas $A_i\overline{z}z+B_iz+C_i\overline{z}+D_i=0$, donde A_i,D_i son reales, C_i,B_i complejos conjugados y $A_iD_i-B_iC_i<0$. Pruébese que la condición necesaria y suficiente para que C_1 y C_2 se corten ortogonalmente es que se cumpla:

$$A_1D_2 + A_2D_1 = B_1C_2 + B_2C_1.$$

6. Ejercicio

Dada la circunferencia $S = \{z : |z - a| = R\}$, el simétrico de $b \in \mathbb{C}$, $b \neq a$, respecto a S es el único punto de la semirrecta $L(a,b) = \{a + t(b-a) : t \geq 0\}$ que cumple $|b-a||b^*-a| = R^2$). Viene dado por

$$b^* = a + \frac{R^2}{\bar{b} - \bar{a}} = a + \frac{R^2}{|b - a|^2} (b - a)$$

Se completa la definición de simetría con $a^* = \infty$ y $\infty^* = a$.

- i) Indique un procedimiento geométrico para obtener el simétrico de un punto respecto a una circunferencia.
- ii) Demuestre que la familia de las circunferencias que pasan por $b \notin S$ y su simétrico b^* coincide con la familia de las circunferencias ortogonales a S que pasan por b.
- iii) Deduzca que la simetría transforma circunferencias ortogonales en circunferencias ortogonales y que las circunferencias ortogonales a S se transforman en sí mismas.

7. Ejercicio

Sea (E, ρ) un espacio métrico. Si A, B son subconjuntos no vacíos de E y $x \in E$ se define

$$\rho(x, B) = \inf \{ \rho(x, b) : b \in B \}; \quad \rho(A, B) = \inf \{ \rho(a, b) : a \in A, b \in B \}$$

- a) Pruébese que $x \to \rho(x, A)$ es una función continua y que $x \in \overline{A}$ si, y sólo, si $\rho(x, A) = 0$.
- b) Pruébese que si (E, ρ) es el espacio métrico (\mathbb{C}, d) y A se supone cerrado entonces existe $a \in A$ tal que d(x, A) = d(x, a).
- c) Pruébese que si A es compacto entonces d(A,B)=d(a,B) para algún $a\in A$. Dedúzcase de ello que si A es compacto y B es cerrado entonces d(A,B)>0 si y sólo si $A\cap B=\emptyset$. Muéstrese con un ejemplo que el rresultado es falso si sólo se supone que A y B son cerrados.

8. Ejercicio

Sea X un subconjunto de \mathbb{C} y A una parte conexa de \mathbb{C} que tiene intersección no vacía con el interior de X y con su exterior. Pruébese que A contiene algún punto de la frontera de X.

9. Ejercicio

Sea $\Omega \subseteq \mathbb{C}$ abierto y M un subconjunto de Ω que no tiene puntos de acumulación en Ω .

- a) Pruébese que M es numerable y que $\Omega \setminus M$ es abierto.
- b) Pruébese que si Ω es conexo entonces $\Omega \setminus M$ también lo es.

10. Ejercicio

Si Ω es un subconjunto abierto del plano complejo se considera la sucesión de conjuntos

$$K_n = \{ z \in \mathbb{C} : |z| \le n, d(z, \mathbb{C} \setminus \Omega) \ge 1/n \}.$$

Pruébese que K_n es una sucesión de conjuntos compactos que recubre Ω y verifica $K_n \subseteq K_{n+1}$ para cada $n \in \mathbb{N}$. Deducir de aquí que para cada subconjunto compacto K de Ω , existe un $n \in \mathbb{N}$ tal que $K \subset K_n$.