

Funciones de variable compleja / Introducción al análisis complejo Control 1 — 21–11–2011

TIPO 01

ATENCIÓN: Rellene los datos de la cabecera: a la izquierda el D.N.I. (en dos formas) y el tipo (01 o 02), a la derecha facultad, asignatura, apellidos, nombre y fecha.

- 1. Sea $z = -1 + i \in \mathbb{C}$, entonces:
 - a) $z\overline{z}=2$ y $11\pi/4$ es argumento de z.

 - c) El módulo de z es $-\sqrt{2}$ y $5\pi/4$ es argumento de z.
 - d) El módulo de z es $\sqrt{2}$ y $5\pi/4$ es argumento de z.
 - e) $z\overline{z} = 2$ y $5\pi/4$ es argumento de z.
 - f) Ninguna de las anteriores.
- 2. Consideremos la ecuación $z^n = 1$. Entonces:
 - a) No existe ninguna solución en \mathbb{R} .
 - b) Si z es solución también lo es \bar{z} .
 - c) La suma de los argumentos principales de todas las soluciones es $(n-1)\pi$.
 - d) La suma de los argumentos principales de todas las soluciones es 2π .
 - e) Las raíces son los vértices de un polígono regular inscrito en la circunferencia unidad, una de cuyas diagonales está contenida en la recta real si n es par.

 Correcta
 - f) Ninguna de las anteriores.
- 3. ¿Cuáles de las siguientes afirmaciones son ciertas? $(\log(z) \text{ representa el conjunto de los logaritmos de } z \text{ y Log}(z)$ el logaritmo principal de z. Arg(z) es el argumento principal de z)
 - a) Si $w \in \log(-1 i)$ entonces $|w| = \frac{1}{2} \log 2$ y $Arg(w) = -\frac{\pi}{4}$.
 - b) $\log(-1) = \{k\pi i : k \in \mathbb{Z}\}.$
 - c) $\operatorname{Log}(e^z) = z$ para todo $z \in \mathbb{C}$.
 - $d) \log(z_1 z_2) = \log(z_1) + \log(z_2)$. Correcta
 - e) $Log(z_1z_2) = Log(z_1) + Log(z_2)$.
 - f) Ninguna de las anteriores.
- 4. ¿Cuáles de las siguientes afirmaciones son ciertas?
 - a) e^z es invectiva en el conjunto $\{z \in \mathbb{C} : \alpha < \text{Re } z < \beta\}$, siendo $\beta \alpha \leq 2\pi$.
 - b) e^z es inyectiva en el conjunto $\{z \in \mathbb{C} : \alpha < \text{Im } z < \beta\}$, siendo $\beta \alpha \leq 2\pi$. Correcta
 - c) $\{e^{ix}: x \in \mathbb{R}\} = \{z \in \mathbb{C}: |z| = 1\}.$ Correcta
 - d) La imagen por e^z de $\{x+iy: x \in \mathbb{R}, y \in [0,2\pi]\}$ es \mathbb{C} .
 - e) e^z es la única función analítica en $\mathbb C$ que verifica: f'(z) = f(z), f(0) = 1. Correcta
 - f) Ninguna de las anteriores.

- 5. Sea la función, dependiente del parámetro $a \in \mathbb{C}$, $S_a(z) = \frac{z-a}{1-\bar{a}z}$, entonces:
 - a) $\{S_a(z): a \in D(0,1)\}$ son todas las transformaciones de Möbius que llevan D(0,1) en sí mismo.
 - b) Para cada $a \in D(0,1)$ y cada $\alpha \in \mathbb{R}$, $e^{i\alpha}S_a(z)$ es una transformación de Möbius que lleva D(0,1) en sí mismo.

 Correcta
 - c) $(S_a)^{-1}(z) = S_{-a}(z)$. Correcta
 - d) $S_a'(a) = \frac{1}{1-|a|^2}$.
 - e) Existe $z_0 \in D(0,1)$ tal que $|S_a(z_0)| = 1$.
 - f) Ninguna de las anteriores.
- 6. Sea $T:\mathbb{C}_{\infty}\longrightarrow\mathbb{C}_{\infty}$ una transformación de Möbius. Entonces:
 - a) Si $T(\partial D(a,r)) = \partial D(b,\rho)$ entonces $T(D(a,r)) = D(b,\rho)$.
 - b) Si $T(\partial D(a,r)) = \partial D(b,\rho)$ y existe $z_0 \in D(a,r)$ tal que $|T(z_0) b| < \rho$ entonces $T(D(a,r)) = D(b,\rho)$.
 - c) Si $T(\partial D(a,r)) = \partial D(b,\rho)$ y existe $z_0 \in D(a,r)$ tal que $|T(z_0) b| > \rho$ entonces $T(D(a,r)) = \{z : |z b| > \rho\}$.
 - d) Si $T(\partial D(a,r)) = \partial D(b,\rho)$ y existe $z_0 \in D(a,r)$ tal que $|T(z_0) b| > \rho$ entonces $T(D(a,r)) = \{z : |z-b| > \rho\} \cup \{\infty\}$.
 - e) Si $T(\partial D(a,r)) = \partial D(b,\rho)$ y se verifican $T(a) \in \mathbb{C}$, $|T(a) b| > \rho$ entonces existe r', con 0 < r' < r, tal que $T(\partial D(a,r'))$ es una recta.
 - f) Ninguna de las anteriores.
- 7. ¿Cuáles de las siguientes afirmaciones sobre series de potencias son ciertas?
 - a) $\sum_{n=1}^{\infty} z^n$ converge uniformemente en D(0,1).
 - b) $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converge uniformemente en $\overline{D(0,1)}$.
 - c) $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converge puntualmente en $\{z \in \mathbb{C} : |z|=1\}$.
 - d) $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converge puntualmente en $\{z \in \mathbb{C} : |z| = 1\} \setminus \{1\}$. Correcta
 - e) $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converge uniformemente en $\overline{D(0,1)}$.
 - f) Ninguna de las anteriores.

- 8. Sea $\Omega \subset \mathbb{C}$ un abierto conexo y $f:\Omega \longrightarrow \mathbb{C}$ analítica en Ω . Para cada una de las siguientes afirmaciones indique si es cierto que implica que f es constante.
 - a) $f(\Omega)$ está contenido en una circunferencia.
 - b) $f(\Omega)$ está contenido en una recta.
 - c) $f(\Omega)$ está contenido en una conjunto del tipo $\{x+iy: y=\alpha x^2\}$. Correcta
 - d) f es constante en una circunferencia $\partial D(a,r) \subset \Omega$. Correcte
 - e) |f| es constante en una circunferencia $\partial D(a,r) \subset \Omega$.
 - f) Ninguna de las anteriores.
- 9. Sea $\Omega \subset \mathbb{C}$ abierto y $f: \Omega \longrightarrow \mathbb{C}$, f = u + iv, con $u(x + yi) = \operatorname{Re} f(x + yi)$ y $v(x + yi) = \operatorname{Im} f(x + yi)$; Cuáles de las siguientes afirmaciones sobre f son ciertas?
 - a) Si f es holomorfa en un punto entonces también lo son u y v en dicho punto.
 - b) Si u y v tienen derivadas parciales continuas respecto a x e y en todo Ω entonces $f \in \mathcal{H}(\Omega)$.
 - c) Si f es holomorfa en $a \in \Omega$ entonces $f'(a) = \frac{\partial u}{\partial x}(a) + \frac{\partial v}{\partial x}(a)i$. Correcta
 - d) Si f es holomorfa en $a \in \Omega$ entonces $f'(a) = \frac{\partial u}{\partial y}(a) + \frac{\partial v}{\partial y}(a)i$.
 - e) Si f es holomorfa en $a \in \Omega$ entonces $f'(a) = \frac{\partial v}{\partial y}(a) \frac{\partial u}{\partial y}(a)i$. Correcta
 - f) Ninguna de las anteriores.
- 10. Si $f \in \mathcal{H}(\Omega)$, con $\Omega \subset \mathbb{C}$ abierto conexo, denotaremos por L_f una rama continua del logaritmo de f, definida en cada caso cómo y dónde se indique. ¿Cuáles de las afirmaciones siguientes son ciertas?
 - a) Si L_f existe en el abierto $U \subset \Omega$ entonces $L_f \in \mathcal{H}(U)$. Correcta
 - b) Si $f(z) = z^4 1$ y $\Omega = \mathbb{C}$ entonces existe un disco D(0,r) donde existe L_f . Correcta
 - c) Si f(z) = z y $\Omega = \mathbb{C} \setminus \{x \in \mathbb{R} : x \geq 0\}$ entonces $L_f(z) = \text{Log}(-z) + (2k+1)\pi i$ para algún $k \in \mathbb{Z}$.
 - d) Si $f(z)=z^2-1$ y $\Omega=D(0,1)$ entonces $L_f(z)=\mathrm{Log}(z^2-1)+2k\pi i,$ para algún $k\in\mathbb{Z}.$
 - e) Si $f(z) = \frac{1+iz}{1-z}$, $\Omega = D(0,1)$ y $L_f(0) = 1$ entonces $L_f(z) = \text{Log } \frac{1+iz}{1-z}$.
 - f) Ninguna de las anteriores.