

Funciones de una variable real I. 02/12/2011. TEST 5.

TIPO 01

ATENCIÓN: Rellene los datos de la cabecera: a la izquierda el D.N.I. (en dos formas), a la derecha facultad, asignatura, apellidos, nombre y fecha.

- 1. Sean $(x_n)_n$ e $(y_n)_n$ sucesiones de números reales verificando que existe $k \in \mathbb{N}$ tal que si $n \ge k$ entonces $|x_n y_n| \le \frac{1}{n}$. Entonces:
 - a) Las sucesiones (x_n) e $(y_n)_n$ son convergentes y ambas lo hacen al mismo punto.
 - b) Si ambas sucesiones son convergentes entonces lo hacen al mismo punto.
 - c) Si ambas sucesiones están acotadas, entonces son convergentes, convergiendo ambas al mismo límite.
 - d) La sucesión $(x_n y_n)_n$ converge a cero.
 - e) Existe $\lim_{n} (x_n y_n) = 0$ y por tanto $\lim_{n} x_n = \lim_{n} y_n$.
 - f) Ninguna de las anteriores.
- 2. Sea $a_n = \frac{n!}{(2n)!}$. Entonces la serie $\sum_{n=1}^{+\infty} a_n$ es:
 - a) Convergente porque lím $_n \frac{a_{n+1}}{a_n} = 0 < 1$.
 - b) Convergente porque $\lim_n \frac{a_{n+1}}{a_n} = \frac{1}{2} < 1$.
 - c) Divergente porque $\lim_n a_n \neq 0$.
 - d) Convergente porque lím
_n $\sqrt[n]{a_n}=0<1.$
 - e) Convergente porque $\lim_n \sqrt[n]{a_n} = \frac{1}{2} < 1$.
 - f) Ninguna de las anteriores.
- 3. Sea $a_n = \frac{c^n}{n!}$, con c > 1, entonces:
 - a) $(a_n)_n$ no está acotada porque c > 1 y c^n se hace tan grande como queramos para n muy grande.
 - $b) \lim_{n} a_n = 0.$
 - c) $\lim_n a_n = l \operatorname{con} l \neq 0$.
 - d) $\lim_{n} \sqrt[n]{a_n} = \frac{\lim_{n} \sqrt[n]{c}}{\lim_{n} \sqrt[n]{n!}} = \frac{c}{1} = c.$
 - $e) \lim_{n} \frac{a_{n+1}}{a_n} = 0.$
 - f) Ninguna de las anteriores.

- 4. Sea $(a_n)_n$ una sucesión de números reales con lím $a_n = 0$ y para todo $n, a_n \neq 0$. Entonces:
 - a) Para todo $n, |a_n| < 1, b_n := \frac{\log(1+a_n)}{a_n}$ está bien definido y lím $_n b_n = 1.$
 - b) Para todo $n, |a_n| < 1, b_n := \frac{\log(1+a_n)}{a_n}$ está bien definido y lím $_n b_n = 0.$
 - c) Existe n_0 tal que para todo $n \ge n_0$, $|a_n| < 1$, $b_n := \frac{\log(1+a_n)}{a_n}$ está bien definido para todo $n \ge n_0$ pero $\lim_n b_n$ no existe.
 - d) Existe n_0 tal que para todo $n \ge n_0$, $|a_n| < 1$, $b_n := \frac{\log(1+a_n)}{a_n}$ está bien definido para todo $n \ge n_0$ y lím $_n b_n = 1$.
 - e) Existe n_0 tal que para todo $n \ge n_0$, $|a_n| < 1$, $b_n := \frac{\log(1+a_n)}{a_n}$ está bien definido para todo $n \ge n_0$ y lím $_n b_n = 0$.
 - f) Ninguna de las anteriores.
- 5. Sean $f, g: I \to \mathbb{R}$, a un punto de acumulación de I de manera que existe $\lim_{x \to a} f(x) \in \mathbb{R}$.
 - a) Si existe $\lim_{x\to a} (f+g)(x) \in \mathbb{R}$ entonces existe $\lim_{x\to a} g(x) \in \mathbb{R}$.
 - b) Si no existe $\lim_{x\to a} g(x)$ entonces no puede existir el $\lim_{x\to a} (f+g)(x) \in \mathbb{R}$.
 - c) Si existe $\lim_{x\to a} (fg)(x) \in \mathbb{R}$ entonces existe $\lim_{x\to a} g(x) \in \mathbb{R}$.
 - d) Si existe $\lim_{x\to a} g(x) \in \mathbb{R}$ entonces existe $\lim_{x\to a} f(x)/g(x) \in \mathbb{R}$.
 - e) Si existe $\lim_{x\to a} g(x) \in \mathbb{R}$ entonces existe $\lim_{x\to a} (fg)(x) \in \mathbb{R}$.
 - f) Ninguna de las anteriores.
- 6. Sea I un intervalo y $f: I \to (0, +\infty)$ continua, entonces:
 - a) Existe k > 0 tal que $f(x) \ge k$ para todo $x \in I$.
 - b) Si I = [a, b] existe k > 0 tal que $f(x) \ge k$ para todo $x \in I$.
 - c) Si $I = [a, +\infty)$ y existe $\lim_{x \to +\infty} f(x)$ entonces existe k > 0 tal que $f(x) \ge k$ para todo $x \in I$.
 - d) Si I = [a, b) y existe $\lim_{x \to b^-} f(x) = l > 0$ entonces existe k > 0 tal que $f(x) \ge k$ para todo $x \in I$.
 - e) Si $I = [a, +\infty)$ y existe $\lim_{x \to +\infty} f(x) = 0$ entonces existe $\min\{f(x) : x \in I\}$.
 - f) Ninguna de las anteriores.

- 7. Sea $I \subset \mathbb{R}$ un intervalo y $f: I \to \mathbb{R}$ una función continua. Entonces:
 - a) f(I) es un intervalo.
 - b) f(I) es un intervalo únicamente si I es cerrado y acotado.
 - c) Si $f(I) \cap [0,1] = \emptyset$ entonces o $f(I) \subset \{x \in \mathbb{R} : x > 1\}$ o $f(I) \subset \{x \in \mathbb{R} : x < 0\}$.
 - d) Si $I = \mathbb{R}$ necesariamente $f(I) = \mathbb{R}$.
 - e) $f(I) \cap \{x \in \mathbb{R} : x > 0\} \neq \emptyset$ y $f(I) \cap \{x \in \mathbb{R} : x < 0\} \neq \emptyset$
 - f) Ninguna de las anteriores.
- 8. Sea $\emptyset \neq D \subset \mathbb{R}$ y $f: D \to \mathbb{R}$ continua.
 - a) Si existen $a, b \in D$ de manera que f(a)f(b) < 0 entonces existe $c \in D$ tal que f(c) = 0.
 - b) Si D está acotado entonces f es una función acotada.
 - c) Si D es un intervalo cerrado y acotado entonces f está acotada.
 - d) Si D es un intervalo acotado entonces f está acotada.
 - e) Para cada $x \in D$ existe un entorno de x en D donde f está acotada.
 - f) Ninguna de las anteriores.
- 9. La ecuación $(x^2 2)e^{-x} + 1 = 0$ tiene:
 - a) No tiene solución en el intervalo [-2, 2].
 - b) Al menos dos soluciones, una al menos en $(0, +\infty)$ y otra en $(-\infty, 0)$.
 - c) Al menos una solución en $(-\infty, 0)$.
 - d) Ninguna solución en \mathbb{R} .
 - e) Ninguna solución, pues no está bien definida dado que e^{-x} no siempre existe pues no existen siempre logaritmos reales de números negativos.
 - f) Ninguna de las anteriores.
- 10. Sea $f(x) = \cos(\sqrt{x})$ para $x \in (0, +\infty)$.
 - a) f es periódica de periodo $4\pi^2$.
 - $b)\ f$ es uniformemente continua porque está acotada.
 - c) f alcanza su máximo y mínimo absolutos.
 - d) f es uniformemente continua porque cos y $\sqrt{\ }$ son uniformemente continuas y la composición de funciones uniformemente continuas siempre es uniformemente continua.
 - e) f es continua porque cos y $\sqrt{\ }$ son continuas y la composición de funciones continuas siempre es continua.
 - f) Ninguna de las anteriores.