Funciones de Una Variable Real I: Límites funcionales y continuidad

B. Cascales y L. Oncina

Universidad de Murcia http://webs.um.es/beca

Grado en Matemáticas Curso 2011-2012

- Funciones elementales
 - Funciones exponencial y logaritmo

- Funciones elementales
 - Funciones exponencial y logaritmo
- 2 Límites funcionales
 - Límite de una función en un punto

- Funciones elementales
 - Funciones exponencial y logaritmo
- 2 Límites funcionales
 - Límite de una función en un punto
- Funciones continuas
 - Funciones continuas en un intervalo
 - Continuidad y monotonía
 - Continuidad uniforme

Objetivos

Definir y entender el concepto de límite funcional.

- Operation de l'imite funcional.
- 2 Entender la condición de Cauchy para límite funcional.

- Definir y entender el concepto de límite funcional.
- 2 Entender la condición de Cauchy para límite funcional.
- 3 Relacionar los límites funcionales con los límites de sucesiones.

- Definir y entender el concepto de límite funcional.
- 2 Entender la condición de Cauchy para límite funcional.
- 3 Relacionar los límites funcionales con los límites de sucesiones.
- 4 Conocer algunos ejemplos de límites relevantes.

- Operation de l'imite funcional.
- 2 Entender la condición de Cauchy para límite funcional.
- 3 Relacionar los límites funcionales con los límites de sucesiones.
- Onocer algunos ejemplos de límites relevantes.
- 5 Entender y aplicar los límites laterales.

- Operation de l'imite funcional.
- Entender la condición de Cauchy para límite funcional.
- 3 Relacionar los límites funcionales con los límites de sucesiones.
- Onocer algunos ejemplos de límites relevantes.
- 6 Entender y aplicar los límites laterales.
- Manipular expresiones involucrando límites. Resolver ejercicios que involucran límites.

- Operation de l'imite funcional.
- 2 Entender la condición de Cauchy para límite funcional.
- 3 Relacionar los límites funcionales con los límites de sucesiones.
- Onocer algunos ejemplos de límites relevantes.
- 6 Entender y aplicar los límites laterales.
- Manipular expresiones involucrando límites. Resolver ejercicios que involucran límites.
- Entender el concepto de continuidad: conocer la continuidad de las funciones clásicas.

- Operation de l'imite funcional.
- 2 Entender la condición de Cauchy para límite funcional.
- Relacionar los límites funcionales con los límites de sucesiones.
- Onocer algunos ejemplos de límites relevantes.
- 6 Entender y aplicar los límites laterales.
- Manipular expresiones involucrando límites. Resolver ejercicios que involucran límites.
- Entender el concepto de continuidad: conocer la continuidad de las funciones clásicas.
- Onocer y demostrar los teoremas de Weierstrass, Bolzano y de los valores intermedidos

- Operation de l'imite funcional.
- 2 Entender la condición de Cauchy para límite funcional.
- 3 Relacionar los límites funcionales con los límites de sucesiones.
- Conocer algunos ejemplos de límites relevantes.
- 6 Entender y aplicar los límites laterales.
- Manipular expresiones involucrando límites. Resolver ejercicios que involucran límites.
- Entender el concepto de continuidad: conocer la continuidad de las funciones clásicas.
- Onocer y demostrar los teoremas de Weierstrass, Bolzano y de los valores intermedidos.
- Onocer la relación entre monotonía y continuidad.

- Operation de l'imite funcional.
- 2 Entender la condición de Cauchy para límite funcional.
- Relacionar los límites funcionales con los límites de sucesiones.
- Onocer algunos ejemplos de límites relevantes.
- Entender y aplicar los límites laterales.
- Manipular expresiones involucrando límites. Resolver ejercicios que involucran límites.
- Entender el concepto de continuidad: conocer la continuidad de las funciones clásicas.
- Onocer y demostrar los teoremas de Weierstrass, Bolzano y de los valores intermedidos.
- Onocer la relación entre monotonía y continuidad.
- O Comprender el concepto de función uniformemente continua.

Definición

Cuando $a \in \mathbb{R}$ y $n \in \mathbb{N}$, con a^n se denota el producto de a por sí mismo n-veces.

Definición

Cuando $a \in \mathbb{R}$ y $n \in \mathbb{N}$, con a^n se denota el producto de a por sí mismo n-veces.

Proposición

Si $n, m \in \mathbb{N}$ y $a, b \in \mathbb{R}$ entonces:

- $(ab)^n = a^n b^n.$
- **3** $(a^n)^m = a^{nm}$.
- Si a > 1 y n < m, entonces $a^n < a^m$.
 - Si a < 1 y n < m, entonces $a^n > a^m$.
- **5** Si 0 < a < b y n > 0, entonces $a^n < b^n$.

Definición

Cuando $a \in \mathbb{R}$ y $n \in \mathbb{N}$, con a^n se denota el producto de a por sí mismo n-veces.

Proposición

Si $n, m \in \mathbb{N}$ y $a, b \in \mathbb{R}$ entonces:

- $(ab)^n = a^n b^n.$
- **3** $(a^n)^m = a^{nm}$.
- Si a > 1 y n < m, entonces $a^n < a^m$.
 - Si a < 1 y n < m, entonces $a^n > a^m$.
- **5** Si 0 < a < b y n > 0, entonces $a^n < b^n$.

Definición

La definición de a^n puede extenderse para $n \in \mathbb{Z}$ definiendo $a^0 := 1$ y $a^n = 1/a^{-n}$ si n es un entero negativo.

Definición

Dado un real positivo a y n ∈ N existe un único real positivo b denotado como ⁿ√b que cumple bⁿ = a y que recibe el nombre de raíz n-ésima de a. Definimos entonces a^{1/n} := ⁿ√a.

Definición

- Dado un real positivo a y n ∈ N existe un único real positivo b denotado como ⁿ√b que cumple bⁿ = a y que recibe el nombre de raíz n-ésima de a. Definimos entonces a^{1/n} := ⁿ√a.
- Se define $a^{\frac{m}{n}}$ donde $m \in \mathbb{Z}, n \in \mathbb{N}$ mediante la fórmula

$$a^{\frac{m}{n}} := \sqrt[n]{a^m}.$$

Definición

- Dado un real positivo a y n ∈ N existe un único real positivo b denotado como ⁿ√b que cumple bⁿ = a y que recibe el nombre de raíz n-ésima de a. Definimos entonces a^{1/n} := ⁿ√a.
- Se define $a^{\frac{m}{n}}$ donde $m \in \mathbb{Z}, n \in \mathbb{N}$ mediante la fórmula

$$a^{\frac{m}{n}}:=\sqrt[n]{a^m}.$$

Nota

Si $\frac{p}{q} = \frac{m}{n}$ entonces se cumple que

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \sqrt[p]{a^q} = a^{\frac{p}{q}},$$

con lo que queda unívocamente definido a^r para todo $r \in \mathbb{Q}$.

Proposición

Sean $r, s \in \mathbb{Q}$ y a, b reales estrictamente mayores que cero.

- $a^{r+s} = a^r a^s.$
- $(ab)^r = a^r b^r.$
- **3** $(a^r)^s = a^{rs}$.
- Si a > 1 y r < s, entonces $a^r < a^s$.
 - Si 0 < a < 1 y r < s, entonces $a^r > a^s$.
- \bullet Si 0 < a < b y r > 0, entonces $a^r < b^r$.
 - Si 0 < a < b y r < 0, entonces $a^r > b^r$.

Proposición

Si a es un número real positivo entonces:

- $\lim_{n\to\infty}a^{1/n}=1;$
- ② para cada $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $|a^r 1| < \varepsilon$ para cada racional r que cumpla $0 < r \le 1/n_0$.

Proposición

Si a es un número real positivo entonces:

- $\lim_{n\to\infty}a^{1/n}=1;$
- ② para cada $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $|a^r 1| < \varepsilon$ para cada racional r que cumpla $0 < r \le 1/n_0$.

Proposición

- **①** Si $(r_n)_{n \in \mathbb{N}}$ es una sucesión de racionales con límite x, entonces existe lim a^{r_n} .
- 2 El límite anterior es independiente de la sucesión $(r_n)_{n\in\mathbb{N}}$.

Proposición

Si a es un número real positivo entonces:

- $\lim_{n\to\infty}a^{1/n}=1;$
- ② para cada $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $|a^r 1| < \varepsilon$ para cada racional r que cumpla $0 < r \le 1/n_0$.

Proposición

- **②** Si $(r_n)_{n \in \mathbb{N}}$ es una sucesión de racionales con límite x, entonces existe lim a^{r_n} .
- 2 El límite anterior es independiente de la sucesión $(r_n)_{n\in\mathbb{N}}$.

Definición

Si a > 0 y $x \in \mathbb{R}$ se define $a^x := \lim_n a^{r_n}$, donde $(r_n)_n$ es cualquier sucesión de racionales convergente a x.

Proposición

Sean $x, y \in \mathbb{R}$ y a, b > 0.

- $a^{x+y} = a^x a^y$.
- $(ab)^x = a^x b^x.$
- Si a > 1 y x < y, entonces $a^x < a^y$ (la función a^x es creciente si a > 1).
 - Si 0 < a < 1 y x < y, entonces $a^x > a^y$ (a^x es decreciente si a < 1).
- \bullet Si $0 < a < b \ y \ x > 0$, entonces $a^x < b^x$.
 - Si 0 < a < b y x < 0, entonces $a^x > b^x$.
- **6** Si $(x_n)_n$ converge a x entonces $\lim a^{x_n} = a^x$.
- • Si a > 1, para cada k ∈ ℝ existe t ∈ ℝ tal que x > t implica a^x > k
 (a^x no está acotada superiormente si a > 1).
 - Si a < 1 para cada $\varepsilon > 0$ existe $t \in \mathbb{R}$ tal que x > t implica $a^x < \varepsilon$ (a^x tiene ínfimo 0 si a < 1).

La función logaritmo

Proposición

Si $0 < a \neq 1$ y x > 0 existe un único $y \in \mathbb{R}$ tal que $a^y = x$.

La función logaritmo

Proposición

Si $0 < a \neq 1$ y x > 0 existe un único $y \in \mathbb{R}$ tal que $a^y = x$.

Definición

Para a>0, $a\ne 1$, y x>0, se llama logaritmo en base a de x al único número real y que satisface la ecuación $a^y=x$. Se escribe $\log_a x:=y$. Cuando a=e se llama logaritmo neperiano y se denota simplemente con $\log x$.

La función logaritmo

Proposición

La función logaritmo en base a tiene las siguientes propiedades:

- Es una función estrictamente creciente cuando a > 1, es decir, si 0 < x < y entonces $\log_a x < \log_a y$;
 - Es una función estrictamente decreciente cuando a < 1, es decir, si 0 < x < y entonces $\log_a x > \log_a y$;

- $in x_n = x con x_n > 0 y x > 0 entonces lim log_a x_n = log_a x.$

siendo x, y, z números reales, con x > 0, y > 0.

Progreso

Viernes 12 de noviembre

- El Viernes 5 se hizo un taller con entrega y evaluación.
- Lunes y Miércoles, 8 y 9 se insistió en el concepto de función continua y en particular se analizaron las funciones exponencial y logaritmo.
- El Viernes 12 no hubo clase.

Funciones

Consideraremos funciones

$$f:D\longrightarrow F$$

definidas en un conjunto D (llamado dominio o conjunto inicial) que toman valores en un conjunto F (llamado conjunto final) entendiendo por tal una correspondencia, del tipo que sea, que permite asignar a cada elemento $x \in D$ un único punto $f(x) \in F$.

Funciones

Consideraremos funciones

$$f:D\longrightarrow F$$

definidas en un conjunto D (llamado dominio o conjunto inicial) que toman valores en un conjunto F (llamado conjunto final) entendiendo por tal una correspondencia, del tipo que sea, que permite asignar a cada elemento $x \in D$ un único punto $f(x) \in F$.

Nota

En sentido estricto la función es la terna (D, F, f) y un cambio en alguno de los elementos significa cambiar la función.

① $\overline{\mathbb{R}}$ la denominada recta real ampliada, obtenida adjuntado a \mathbb{R} los símbolos del infinito, es decir, $\overline{\mathbb{R}}:=\mathbb{R}\cup\{+\infty,-\infty\}$.

- ① $\overline{\mathbb{R}}$ la denominada recta real ampliada, obtenida adjuntado a \mathbb{R} los símbolos del infinito, es decir, $\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\}$.
- **②** Por intervalo I de extremos $a,b\in\overline{\mathbb{R}}$ entenderemos cualquiera de los siguientes intervalos:

$$[a, b], [a, b), (a, b], (a, b)$$

 $(-\infty, +\infty), (-\infty, b), (-\infty, b], (a, +\infty), [a, +\infty).$

- ⓐ \mathbb{R} la denominada recta real ampliada, obtenida adjuntado a \mathbb{R} los símbolos del infinito, es decir, $\mathbb{R} := \mathbb{R} \cup \{+\infty, -\infty\}$.
- ② Por intervalo I de extremos $a,b\in\overline{\mathbb{R}}$ entenderemos cualquiera de los siguientes intervalos:

$$[a, b], [a, b), (a, b], (a, b)$$

 $(-\infty, +\infty), (-\infty, b), (-\infty, b], (a, +\infty), [a, +\infty).$

3 Se llama bola abierta de centro $x \in \mathbb{K}$ y radio r > 0 al siguiente conjunto

$$B(x, r) := \{ y \in \mathbb{K} : |y - x| < r \}.$$

- ⓐ $\overline{\mathbb{R}}$ la denominada recta real ampliada, obtenida adjuntado a \mathbb{R} los símbolos del infinito, es decir, $\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\}$.
- ② Por intervalo I de extremos $a,b\in\overline{\mathbb{R}}$ entenderemos cualquiera de los siguientes intervalos:

$$[a, b], [a, b), (a, b], (a, b)$$

 $(-\infty, +\infty), (-\infty, b), (-\infty, b], (a, +\infty), [a, +\infty).$

3 Se llama bola abierta de centro $x \in \mathbb{K}$ y radio r > 0 al siguiente conjunto

$$B(x,r) := \{ y \in \mathbb{K} : |y-x| < r \}.$$

Definición

- **①** Se dice que V es un entorno de $x \in \mathbb{K}$ si existe r > 0 tal que $B(x, r) \subset V$.
- ② Si A es un subconjunto de \mathbb{K} diremos que x es un punto de acumulación de A si para cada r > 0 el conjunto $B(x, r) \cap A$ contiene al menos un punto diferente de x.

Ejemplos

- **1** Si A = [0, 1] entonces cada punto $x \in A$ es de acumulación de A.
- ② Si A = (0,1) entonces cada punto $x \in [0,1]$ es de acumulación de A.
- Si A = {1/n: n∈ N} entonces 0 es un punto de acumulación de A; y de hecho es el único.
- 4 Si $A = \mathbb{N}$ entonces A no tiene puntos de acumulación.

- **1** Si A = [0, 1] entonces cada punto $x \in A$ es de acumulación de A.
- ② Si A = (0,1) entonces cada punto $x \in [0,1]$ es de acumulación de A.
- Si A = {1/n: n∈ N} entonces 0 es un punto de acumulación de A; y de hecho es el único.
- 4 Si $A = \mathbb{N}$ entonces A no tiene puntos de acumulación.

Nota

Si x es un punto de acumulación de A, x puede o no pertenecer a A, pero en todo caso, existe una sucesión $(x_n)_n \subset A$ con $x_n \neq x$, para todo $n \in \mathbb{N}$, tal que $x = \lim_n x_n$.

Sea $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$. Si c es punto de acumulación de D se dice que L es el límite de f en c, y se escribe

$$\lim_{x\to c}f(x)=L,$$

si para cada $\varepsilon>0$ existe $\delta>0$ tal que para cada $x\in D$ si $0<|x-c|<\delta$ entonces $|f(x)-L|<\varepsilon$.

Sea $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$. Si c es punto de acumulación de D se dice que L es el límite de f en c, y se escribe

$$\lim_{x\to c} f(x) = L,$$

si para cada $\varepsilon>0$ existe $\delta>0$ tal que para cada $x\in D$ si $0<|x-c|<\delta$ entonces $|f(x)-L|<\varepsilon$.

Nota

• Una formulación equivalente con el lenguaje de bolas es la siguiente: para cada bola $B(L,\varepsilon)$ existe una bola $B(c,\delta)$ tal que $f((B(c,\delta)\cap D)\setminus\{c\}))\subset B(L,\varepsilon)$.

Sea $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$. Si c es punto de acumulación de D se dice que L es el límite de f en c, y se escribe

$$\lim_{x\to c}f(x)=L,$$

si para cada $\varepsilon>0$ existe $\delta>0$ tal que para cada $x\in D$ si $0<|x-c|<\delta$ entonces $|f(x)-L|<\varepsilon$.

Nota

- Una formulación equivalente con el lenguaje de bolas es la siguiente: para cada bola $B(L,\varepsilon)$ existe una bola $B(c,\delta)$ tal que $f((B(c,\delta)\cap D)\setminus\{c\}))\subset B(L,\varepsilon)$.
- Simbólicamente la anterior definición de límite la escribiríamos en la forma:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ \left(0 < |x - c| < \delta \implies |f(x) - L| < \varepsilon \right)$$

Sean $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ y c un punto de acumulación de D. Las siguientes afirmaciones son equivalentes:

- ② Para cada sucesión $(x_n)_{n\in\mathbb{N}}\subset D$ tal que $\lim_n x_n=c$ y $x_n\neq c$ para todo $n\in\mathbb{N}$, se verifica $L=\lim_n f(x_n)$.

Sean $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ y c un punto de acumulación de D. Las siguientes afirmaciones son equivalentes:

- ② Para cada sucesión $(x_n)_{n\in\mathbb{N}}\subset D$ tal que $\lim_n x_n=c$ y $x_n\neq c$ para todo $n\in\mathbb{N}$, se verifica $L=\lim_n f(x_n)$.

Proposición

Si existe el límite de una función en un punto, entonces es único.

Sean $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ y c un punto de acumulación de D. Las siguientes afirmaciones son equivalentes:

- 2 Para cada sucesión $(x_n)_{n\in\mathbb{N}}\subset D$ tal que $\lim_n x_n=c$ y $x_n\neq c$ para todo $n\in\mathbb{N}$, se verifica $L=\lim_n f(x_n)$.

Proposición

Si existe el límite de una función en un punto, entonces es único.

Condición de Cauchy

Sean $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ y c un punto de acumulación de D. Las siguientes afirmaciones son equivalentes:

- ① Existe $\lim_{x\to c} f(x) := L \in \mathbb{K}$
- 2 Para cada $\varepsilon > 0$ existe $\delta > 0$ tal que para todo $x, y \in B(c, \delta) \setminus \{c\}$ se verifica que $|f(x) f(y)| < \varepsilon$.

Progreso

Lunes 15 de noviembre

Se llegó hasta la transparencia anterior.

Sean f,g funciones de $D\subset \mathbb{K}$ en \mathbb{K} y c un punto de acumulación de D tales que existen

$$L_1 = \lim_{x \to c} f(x) \in \mathbb{K}, \quad \text{y} \quad L_2 = \lim_{x \to c} g(x) \in \mathbb{K}.$$

Entonces:

- 1 Existe $\lim_{x\to c} f(x) + g(x)$ y vale $L_1 + L_2$.
- 2 Existe $\lim_{x\to c} f(x) \cdot g(x)$ y vale $L_1 \cdot L_2$
- 3 Si $L_2 \neq 0$ existe $\lim_{x \to c} \frac{f(x)}{g(x)}$ y vale $\frac{L_1}{L_2}$.
- **4** Si además las funciones toman valores en \mathbb{R} se cumplen las dos propiedades siguientes:
 - Si $f(x) \le g(x)$ para todo $x \in D$ se verifica que $L_1 \le L_2$.
 - Si h es otra función de D en \mathbb{R} tal que $f(x) \leq h(x) \leq g(x)$ en D y además $L_1 = L_2 = L$, también se verifica que $L = \lim_{x \to c} h(x)$.

1 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = x tiene por límite c en c.

- **1** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = x tiene por límite c en c.
- **2** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3$ tiene por límite c^3 en c.

- **1** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = x tiene por límite c en c.
- ② La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3$ tiene por límite c^3 en c.
- **3** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt[4]{x}$ tiene por límite $\sqrt[4]{c}$ en c y algo análogo ocurre con cualquier raíz k-ésima.

- **1** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = x tiene por límite c en c.
- ② La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3$ tiene por límite c^3 en c.
- 3 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt[4]{x}$ tiene por límite $\sqrt[4]{c}$ en c y algo análogo ocurre con cualquier raíz k-ésima.
- **③** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sin x$ tiene por límite $\sin c$ en c.

- **1** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = x tiene por límite c en c.
- 2 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3$ tiene por límite c^3 en c.
- 3 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt[4]{x}$ tiene por límite $\sqrt[4]{c}$ en c y algo análogo ocurre con cualquier raíz k-ésima.
- ① La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sin x$ tiene por límite $\sin c$ en c.
- **5** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = e^x$ tiene por límite e^c en c.

- **1** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = x tiene por límite c en c.
- 2 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3$ tiene por límite c^3 en c.
- 3 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt[4]{x}$ tiene por límite $\sqrt[4]{c}$ en c y algo análogo ocurre con cualquier raíz k-ésima.
- **③** La función $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sin x$ tiene por límite sin c en c.
- **5** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = e^x$ tiene por límite e^c en c.
- **1** La función $f:(0,\infty) \longrightarrow \mathbb{R}$ definida por $f(x) = \log x$ tiene por límite $\log c$ en $c \in (0,\infty)$.

- **1** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = x tiene por límite c en c.
- 2 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3$ tiene por límite c^3 en c.
- 3 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt[4]{x}$ tiene por límite $\sqrt[4]{c}$ en c y algo análogo ocurre con cualquier raíz k-ésima.
- **3** La función $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sin x$ tiene por límite sin c en c.
- **5** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = e^x$ tiene por límite e^c en c.
- **③** La función $f:(0,\infty) \longrightarrow \mathbb{R}$ definida por $f(x) = \log x$ tiene por límite $\log c$ en $c \in (0,\infty)$.
- **②** La función $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = [x] tiene por límite [c] si $c \notin \mathbb{Z}$ y no tiene límite si $c \in \mathbb{Z}$.

- **1** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = x tiene por límite c en c.
- 2 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3$ tiene por límite c^3 en c.
- 3 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt[4]{x}$ tiene por límite $\sqrt[4]{c}$ en c y algo análogo ocurre con cualquier raíz k-ésima.
- **3** La función $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sin x$ tiene por límite sin c en c.
- **5** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = e^x$ tiene por límite e^c en c.
- **③** La función $f:(0,\infty) \longrightarrow \mathbb{R}$ definida por $f(x) = \log x$ tiene por límite $\log c$ en $c \in (0,\infty)$.
- **②** La función $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = [x] tiene por límite [c] si $c \notin \mathbb{Z}$ y no tiene límite si $c \in \mathbb{Z}$.
- **3** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sin(1/x)$ no tiene límite para c = 0.

- **1** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = x tiene por límite c en c.
- 2 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3$ tiene por límite c^3 en c.
- 3 La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt[4]{x}$ tiene por límite $\sqrt[4]{c}$ en c y algo análogo ocurre con cualquier raíz k-ésima.
- ① La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sin x$ tiene por límite $\sin c$ en c.
- **3** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = e^x$ tiene por límite e^c en c.
- **③** La función $f:(0,\infty) \longrightarrow \mathbb{R}$ definida por $f(x) = \log x$ tiene por límite $\log c$ en $c \in (0,\infty)$.
- **②** La función $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = [x] tiene por límite [c] si $c \notin \mathbb{Z}$ y no tiene límite si $c \in \mathbb{Z}$.
- **3** La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sin(1/x)$ no tiene límite para c = 0.
- ② La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x \sin(1/x)$ tiene por límite 0 para c = 0.

Progreso

Miércoles 17 de noviembre

Se llegó hasta la transparencia anterior.

Hasta ahora hemos considerado que c y L son números reales o complejos, pero es posible ampliar la definición de límite para que incluir también los casos en que c o L sean $\pm\infty$. Concretemos.

Definición

- Si f(x) es una función definida en un intervalo de la forma $(a, +\infty)$, decir que $\lim_{x \to +\infty} f(x) = L$ significa que para cada $\varepsilon > 0$, existe $k \in \mathbb{R}$ tal que si $x \in (a, +\infty)$ y x > k entonces $|f(x) L| < \varepsilon$.
- ② Si $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ y c es un punto de acumulación de D diremos que $\lim_{x\to c} f(x) = +\infty$ si (en términos de entornos): para cada entorno de $+\infty$, $(k, +\infty)$, existe una bola $B(c, \delta)$ tal que $f(B(c, \delta) \cap D \setminus \{c\}) \subset (k, +\infty)$.

Sea $f:D\subset\mathbb{R}\longrightarrow\mathbb{R}$ y sea c un punto de acumulación de D.

• Se llama límite por la derecha de f en c y se denota con $f(c^+) = \lim_{x \to c^+} f(x)$ al límite de la función

$$g:D\cap(c,+\infty)\longrightarrow\mathbb{R}$$

- en c, supuesto que c sea un punto de acumulación del dominio de g, siendo g la restricción de f a $D \cap (c, +\infty)$.
- ② Se llama límite por la izquierda de f en c y se denota con $f(c^-) = \lim_{x \to c^-} f(x)$ al límite de la función

$$g: D \cap (-\infty, c) \longrightarrow \mathbb{R}$$

en c, supuesto que c sea un punto de acumulación del dominio de g, siendo g la restricción de f a $D \cap (-\infty, c)$.

Notación

- $\lim_{x\to c^+} f(x) = L$ si para cada $\varepsilon > 0$, existe $\delta > 0$ tal que para cada $x \in D$, si $0 < x c < \delta$ entonces $|f(x) L| < \varepsilon$.
- $\lim_{x\to c^-} f(x) = L$ si para cada $\varepsilon > 0$, existe $\delta > 0$ tal que para cada $x \in D$, si $0 < c x < \delta$ entonces $|f(x) L| < \varepsilon$.

Notación

- $\lim_{x\to c^+} f(x) = L$ si para cada $\varepsilon > 0$, existe $\delta > 0$ tal que para cada $x \in D$, si $0 < x - c < \delta$ entonces $|f(x) - L| < \varepsilon$.
- $\lim_{x\to c^-} f(x) = L$ si para cada $\varepsilon > 0$, existe $\delta > 0$ tal que para cada $x \in D$, si $0 < c - x < \delta$ entonces $|f(x) - L| < \varepsilon$.

- ① f(x) = [x] tiene límite por la izquierda en cada entero c que vale c 1 y límite por la derecha que vale c.
- 2 $f(x) = \sin(1/x), x \neq 0$, no tiene límites laterales en x = 0.
- 3 f(x) = 1/x, $x \neq 0$, verifica que $\lim_{x\to 0^-} f(x) = -\infty$ y $\lim_{x\to 0^+} f(x) = +\infty.$
- **3** La función $f(x) = \frac{1}{x^2}$, $x \neq 0$, tiene por límite $+\infty$ en x = 0.
- **5** $f(x) = e^{-(1/x)}, x \neq 0, \lim_{x \to 0^+} f(x) = 0$ y $\lim_{x \to 0^-} f(x) = +\infty$.
- **6** Para la función $f(x) = e^{-(1/x^2)}$, $x \neq 0$, se verifica que $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = 1.$

Sea $f: D \subset \mathbb{K} \longrightarrow \mathbb{K}$ y sea $c \in D$. Se dice que f es continua en c si para $\varepsilon > 0$ existe $\delta > 0$ tal que si $|x - c| < \delta$ entonces $|f(x) - f(c)| < \varepsilon$.

Sea $f: D \subset \mathbb{K} \longrightarrow \mathbb{K}$ y sea $c \in D$. Se dice que f es continua en c si para $\varepsilon > 0$ existe $\delta > 0$ tal que si $|x - c| < \delta$ entonces $|f(x) - f(c)| < \varepsilon$.

Nota

- Si $c \in D$ es un punto de acumulación de D, lo anterior equivale a que $f(c) = \lim_{x \to c} f(x)$.
- ② Si c no es un punto de acumulación de D (es lo que se llama un punto aislado de D) entonces la condición anterior se cumple trivialmente.

Sea $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ y sea $c\in D$. Las siguientes afirmaciones son equivalentes

- $oldsymbol{0}$ f es continua en c.
- 2 Para cada sucesión $(x_n)_n \subset D$ con $c = \lim_n x_n$ se tiene $f(c) = \lim_n f(x_n)$.

Sea $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ y sea $c\in D$. Las siguientes afirmaciones son equivalentes

- \bigcirc f es continua en c.
- 2 Para cada sucesión $(x_n)_n \subset D$ con $c = \lim_n x_n$ se tiene $f(c) = \lim_n f(x_n)$.

Nota

La continuidad de f es equivalente a la conmutatividad entre f y la operación de tomar límites, es decir, que:

$$f(\lim_{n\to\infty}x_n)=\lim_{n\to\infty}f(x_n).$$

Sea $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ y sea $c\in D$. Las siguientes afirmaciones son equivalentes

- \bigcirc f es continua en c.
- 2 Para cada sucesión $(x_n)_n \subset D$ con $c = \lim_n x_n$ se tiene $f(c) = \lim_n f(x_n)$.

Nota

La continuidad de f es equivalente a la conmutatividad entre f y la operación de tomar límites, es decir, que:

$$f(\lim_{n\to\infty}x_n)=\lim_{n\to\infty}f(x_n).$$

Proposición

Sean f,g funciones de $D \subset \mathbb{K}$ en \mathbb{K} continuas en un punto $c \in D$. Entonces:

- **1** La función f + g es continua en c.
- 2 La función fg es continua en c.
- 3 Si g no se anula en D entonces f/g es continua en c.

Nota

En el último apartado de la proposición precedente bastaría, en realidad, con que $g(c) \neq 0$, porque en tal caso existe un entorno de c en el que g no se anula.

Nota

En el último apartado de la proposición precedente bastaría, en realidad, con que $g(c) \neq 0$, porque en tal caso existe un entorno de c en el que g no se anula.

Proposición

Sea $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ una función continua en $c\in D$. Si $f(c)\neq 0$ entonces existe $\delta>0$ tal que $f(x)\neq 0$ para todo $x\in B(c,\delta)$. Además si f toma valores en \mathbb{R} entonces el signo de f(x) es el mismo en todos los $x\in B(c,\delta)$.

Nota

En el último apartado de la proposición precedente bastaría, en realidad, con que $g(c) \neq 0$, porque en tal caso existe un entorno de c en el que g no se anula.

Proposición

Sea $f: D \subset \mathbb{K} \longrightarrow \mathbb{K}$ una función continua en $c \in D$. Si $f(c) \neq 0$ entonces existe $\delta > 0$ tal que $f(x) \neq 0$ para todo $x \in B(c, \delta)$. Además si f toma valores en \mathbb{R} entonces el signo de f(x) es el mismo en todos los $x \in B(c, \delta)$.

Proposición

Sea $f_1: D_1 \longrightarrow \mathbb{K}$ una función continua en $c \in D_1$ y sea $f_2: D_2 \longrightarrow \mathbb{K}$ tal que $f_1(D_1) \subset D_2$ continua en $f_1(c)$. Entonces $f_2 \circ f_1$ es continua en c.

Una función $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ se dice que es continua en D si es continua en cada punto de D.

Una función $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ se dice que es continua en D si es continua en cada punto de D.

- ① Las funciones constantes, la identidad y, más generalmente, los polinomios son funciones continuas en K.
- ② La función exponencial, $f:\mathbb{R}\longrightarrow\mathbb{R}$, definida por $f(x)=e^x$, es continua en \mathbb{R} .
- **3** La función logaritmo neperiano, $f:(0,+\infty) \longrightarrow \mathbb{R}$, definida por $f(x) = \log x$ es continua en $(0,+\infty)$.
- 4 Las funciones seno y coseno son continuas en \mathbb{R} .
- **3** La función definida por $f(t) = \cos t + i \sin t$ para $t \in [0, 2\pi]$ es continua.

1 La función $f:[0,1]\cup[2,3]\cup\{4\}\longrightarrow\mathbb{R}$ definida por

$$f(x) = \begin{cases} x & \text{si } x \in [0, 1] \\ x^2 & \text{si } x \in [2, 3] \cup \{4\} \end{cases}$$

Y la función

$$g(x) = \begin{cases} x & \text{si } x \in [0, 2] \\ x^2 & \text{si } x \in (2, 4] \end{cases}$$

- **②** La función $f: \mathbb{K} \longrightarrow [0, \infty)$ definida por f(x) = |x| es una función continua.
- **8** La función de Dirichlet $D_1: \mathbb{R} \longrightarrow \mathbb{R}$ definida mediante

$$D_1(x) := egin{cases} 0, & \mathsf{si} \ x
otin \mathbb{Q} \ 1, & \mathsf{si} \ x \in \mathbb{Q}, \end{cases}$$

no es continua en ningún punto de \mathbb{R} .

Definiciones... Tipos de discontinuidad

- ① Una función f no es continua en un punto c de su dominio porque, a pesar de que existe $\lim_{x\to c} f(x)$, el valor de dicho límite no coincide con f(c). Un punto c de esa naturaleza se llama una discontinuidad evitable para f.
- ② Para el caso de funciones reales de variable real, si existen los dos límites laterales en c pero no coinciden se dice que la discontinuidad de f en c es de primera especie y se llama salto de f en c a la diferencia $|f(c^+) f(c^-)|$.
- 3 Si alguno de los dos límites laterales no existe la discontinuidad se suele llamar discontinuidad de segunda especie.

Progreso

Miercoles 24 de Noviembre

- El Viernes 19 se hizo un taller con entrega y evaluación.
- Este miércoles se terminó en la página anterior.

Teorema de Weierstrass

Sea $f:B[a,r]\subset\mathbb{K}\longrightarrow\mathbb{R}$ una función continua definida en una bola cerrada y acotada de \mathbb{K} . Entonces:

- 1 f es una función acotada.
- 2 Existen $c, d \in B[a, r]$ tales que $f(c) \le f(x) \le f(d)$, es decir, f alcanza sus valores máximo y mínimo en su dominio.

Teorema de Weierstrass

Sea $f:B[a,r]\subset \mathbb{K}\longrightarrow \mathbb{R}$ una función continua definida en una bola cerrada y acotada de \mathbb{K} . Entonces:

- 1 f es una función acotada.
- 2 Existen $c, d \in B[a, r]$ tales que $f(c) \le f(x) \le f(d)$, es decir, f alcanza sus valores máximo y mínimo en su dominio.

Teorema de Bolzano

Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función continua tal que f(a)f(b) < 0. Entonces existe $c \in (a,b)$ de modo que f(c) = 0.

Teorema de Weierstrass

Sea $f:B[a,r]\subset\mathbb{K}\longrightarrow\mathbb{R}$ una función continua definida en una bola cerrada y acotada de \mathbb{K} . Entonces:

- 1 f es una función acotada.
- 2 Existen $c, d \in B[a, r]$ tales que $f(c) \le f(x) \le f(d)$, es decir, f alcanza sus valores máximo y mínimo en su dominio.

Teorema de Bolzano

Sea $f:[a,b]\longrightarrow \mathbb{R}$ una función continua tal que f(a)f(b)<0. Entonces existe $c\in(a,b)$ de modo que f(c)=0.

Corolario: Propiedad de los valores intermedios

Si $f:[a,b] \longrightarrow \mathbb{R}$ es continua y z está comprendido entre f(a) y f(b), entonces existe $c \in [a,b]$ tal que f(c)=z.

Dada una función $f: I \longrightarrow \mathbb{R}$, se dice que f es

- monótona creciente si para cualquier par de puntos $x_1 < x_2$ en I se cumple $f(x_1) \le f(x_2)$;
- ② monótona decreciente si para cualquier par de puntos $x_1 < x_2$ en I se cumple $f(x_1) \ge f(x_2)$;
- estrictamente creciente si para cualquier par de puntos $x_1 < x_2$ en I se cumple $f(x_1) < f(x_2)$;
- estrictamente decreciente si para cualquier par de puntos $x_1 < x_2$ en I se cumple $f(x_1) > f(x_2)$;
- o monótona si es monótona creciente o monótona decreciente;
- estrictamente monótona si es estrictamente creciente o estrictamente decreciente.

Teorema (Función Inversa)

Sea $f: I \longrightarrow \mathbb{R}$ continua donde I es un intervalo arbitrario de \mathbb{R} . Entonces:

- $oldsymbol{0}$ f es inyectiva si y sólo si es estrictamente monótona.
- ② Si f es estrictamente monótona, también lo es su inversa f^{-1} que, además, es continua.

Teorema (Función Inversa)

Sea $f: I \longrightarrow \mathbb{R}$ continua donde I es un intervalo arbitrario de \mathbb{R} . Entonces:

- \bigcirc f es inyectiva si y sólo si es estrictamente monótona.
- ② Si f es estrictamente monótona, también lo es su inversa f^{-1} que, además, es continua.

Corolario

Sean I,J intervalos de $\mathbb R$ y sea $f:I\longrightarrow J$ biyectiva. Entonces f es continua si y sólo si f es estrictamente monótona.

Se dice que la función $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ es uniformemente continua (en D) si para cada $\varepsilon>0$ existe $\delta>0$ tal que para $x,y\in D$ arbitrarios, si se verifica $|x-y|<\delta$ entonces $|f(x)-f(y)|<\varepsilon$.

Se dice que la función $f:D\subset\mathbb{K}\longrightarrow\mathbb{K}$ es uniformemente continua (en D) si para cada $\varepsilon>0$ existe $\delta>0$ tal que para $x,y\in D$ arbitrarios, si se verifica $|x-y|<\delta$ entonces $|f(x)-f(y)|<\varepsilon$.

Teorema, Heine

Toda función continua definida en una bola cerrada y acotada B[a, r] y con valores en \mathbb{K} es uniformemente continua.

Progreso

Lunes 29 de Noviembre

Se terminó el tema este lunes. Falta comentar algunos ejemplos mas de funciones uniformemente continuas. Se insistirá en los talleres.