

Hoja de Problemas 2. Variable Compleja

25 de Octubre 2011

- 1. Sea $f \in \mathcal{H}(\Omega)$. Se supone que hay un disco $\overline{D(a,r)} \subset \Omega$ tal que f(a) = 1 y |f(z)| > 2 cuando |z-a| = r. Pruébese que f se anula en algún punto del disco abierto D(a,r).
- 2. Se supone que f es una función no constante holomorfa en un abierto conexo Ω y que |f| es constante sobre la frontera de un disco $\overline{D(a,r)} \subseteq \Omega$. Pruébese que f se anula en algún punto $z_0 \in D(a,r)$.
- 3. Sea f una función entera no constante. Pruébese que la función $M(r) = \max\{|f(z)| : |z| = r\}$, definida en $[0, +\infty)$, es creciente continua y $\lim_{r \to \infty} M(r) = +\infty$.
- 4. Sea p(z) un polinomio complejo no constante. Pruébese que si $\varepsilon > 0$ entonces cada componente conexa del abierto $\{z : |p(z)| < \varepsilon\}$ contiene un cero de p.
- 5. Sea Ω un abierto conexo y $f \in \mathcal{H}(\Omega)$ no constante. Pruébese que si $K := \{z \in \Omega : |f(z)| \le 1\}$ es compacto no vacío, entonces f se anula en algún punto de su interior.
- 6. Sea $f \in \mathcal{H}(D(0,R))$ tal que $|f(z)| \leq M$ para todo $z \in D(0,R)$. Pruébese que si $a \in D(0,R)$ y f(a) = b entonces para cada $z \in D(0,R)$ se cumple:

$$\left|\frac{M(f(z) - f(a))}{M^2 - \overline{b}f(z)}\right| \le \left|\frac{R(z - a)}{R^2 - \overline{a}z}\right|$$

Dedúzcase de lo anterior que si M=R=1, para todo $z\in D(0,1)$ se cumple:

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}$$

para cada $z \in D(0,1)$.

- 7. Sean $f, g \in \mathcal{H}(D(0,1))$ tales que f(0) = g(0) y $f(D(0,1)) \subseteq g(D(0,1))$. Pruébese que si g es inyectiva y 0 < r < 1 entonces $f(D(0,r) \subseteq g(D(0,r))$.
- 8. Sea Ω un abierto conexo tal que $\overline{D(0,1)} \subseteq \Omega$ y f una función holomorfa en Ω que verifica $|f(z)| \le 1$ si |z| = 1. Pruébese que si existen dos puntos $a, b \in D(0,1), a \ne b$, tales que f(a) = a, f(b) = b entonces f es la identidad.
- 9. Sea 0 < r < R y $A = \{z \in \mathbb{C} : r \le |z| \le R\}$. Muéstrese que existe un número positivo $\varepsilon > 0$, tal que para cada polinomio p,

$$\sup_{z \in A} \{ |p(z) - z^{-1}| \} \ge \varepsilon$$

10. Sea $f: D(0,1) \to D(0,1)$ una función analítica. Considerando la función $g: D(0,1) \to D(0,1)$ definida por

$$g(z) = \frac{f(z) - a}{1 - \overline{a}f(z)}$$

donde a = f(0), pruebese que

$$\frac{|f(0)| - |z|}{1 + |f(0)||z|} \le |f(z)| \le \frac{|f(0)| + |z|}{1 - |f(0)||z|}$$

- 11. ¿Existe una función holomorfa $f: D(0,1) \to D(0,1)$ tal que $f(\frac{1}{2}) = \frac{3}{4}$ y $f'(\frac{1}{2}) = \frac{3}{4}$?
- 12. Sea f una función holomorfa definida en un abierto que contiene al disco $\{z\in\mathbb{C}:|z|\leq R\}\ (R>0$
 - a) Pruébese que si f(0) = 0 y $0 \le r < R$ entonces

$$M(r) \le \frac{2r}{R - r} A(R)$$

donde $M(r) = \sup\{|f(z)| : |z| \le r\}$ y $A(r) = \sup\{\text{Real } f(z) : |z| \le r\}$.

b) Dedúzcase de lo anterior que cualquiera que sea el valor de f(0) se tiene

$$M(r) \leq \frac{2r}{R-r}A(R) + \frac{R+r}{R-r}|f(0)|$$

- 13. Sean $f, g \in \mathcal{H}(D(0,r))$, con r > 1, tales que f y g no se anulan en D(0,1). Se supone |f(z)| = |g(z)| para |z| = 1 y que f(0) > 0, g(0) > 0. Pruebese que f = g.
- 14. Sea $f \in \mathcal{H}(D(0,1))$ verificando $\lim_{|z| \to 1} |f(z)| = 1$. Pruebese que existe $\lambda \in \mathbb{C}$, con $|\lambda| = 1$, y $a_1, a_2, ...a_n \in D(0,1)$ verificando $f(z) = \lambda \prod_{j=1}^n \frac{z a_j}{1 \overline{a_j} z}$ para cada $z \in D(0,1)$.
- 15. Dada una sucesión (f_n) en $\mathcal{H}(\Omega)$ pruébese que son equivalentes:
 - a) $f_n \to f$ uniformemente sobre compactos de Ω .
 - b) Para cada camino cerrado γ en Ω $f_n \to f$ uniformemente sobre $K = \operatorname{Imagen}(\gamma)$.
- 16. Sea $f \in \mathcal{H}(\mathbb{C})$ que satisface $\operatorname{Real} f(z) \leq |z|$ para todo $z \in \mathbb{C}$ y f(0) = f'(0) = 0. Establézcase la desigualdad $|R^2 f(z)| \leq |z^2 (2R - f(z))|$ válida para $|z| \leq R$ y dedúzcase de ello que f es identicamente nula en \mathbb{C} .
- 17. Pruébese que si $f \in \mathcal{H}(D(0,1))$ y f es inyectiva en $D^*(0,1)$ entonces f es inyectiva.
- 18. Pruébese que si $f \in \mathcal{H}(D(0,1))$ entonces existe una sucesión (z_n) en D(0,1) tal que $(f(z_n))$ es una sucesión acotada y $\lim_{n\to\infty} |z_n| = 1$.