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Abstract. We investigate possible extensions of the classical Krein-
Šmulian theorem to various weak topologies. In particular, if X is a
WCG Banach space and τ is any locally convex topology weaker than the
norm-topology, then for every τ -compact norm-bounded set H, conv τ H

is τ -compact. In arbitrary Banach spaces, the norm-fragmentability
assumption on H is shown to be sufficient for the last property to hold.

A new proof to the following result is given: if a Banach space does
not contain a copy of `1[0, 1], then the Krein-Šmulian theorem holds for
every topology τ induced by a norming set of functionals. We conclude
that in such spaces a norm-bounded set is weakly compact if it is merely
compact in topology induced by a boundary. On the other hand, the
same statement is obtained for all C(K) and `1(Γ) spaces.

1. Introduction

A well-known result that goes back to M. Krein and V. Šmulian [23] says
the following: the closed convex hull of a weakly compact subset of a Banach
space X is weakly compact. It is known that his result also holds when the
weak topology in X is replaced by any locally convex topology compatible
with the dual pair 〈X, X∗〉, [17, Corollary 9.9.6]. For what other topologies
does this statement remain true?

Recent attention to this question is motivated by its connection with the
Boundary Problem posed by G. Godefroy in [14].

Let X be a Banach space and B a boundary in the unit ball
of X∗, i.e such that ‖x‖ = maxb∈B b(x) holds for all x ∈ X .
Denote by σ(X, B) the topology in X of pointwise convergence
on B. Is a norm-bounded subset H of X weakly compact if
it is merely compact with respect to σ(X, B)?
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In [30] S. Simons gives a partial positive answer to this question in the
case in which H is a convex set. This establishes the equivalence between the
Krein-Šmulian-type theorem for topologies σ(X, B) generated by boundaries
and the Boundary Problem itself. In other words, if one can prove that in a
certain Banach space the σ(X, B)-closed convex hull of every norm-bounded
σ(X, B)-compact subset is again σ(X, B)-compact, i.e. the analogue of the
classical Krein-Šmulian Theorem, then following Simons’ result for σ(X, B),
the Boundary Problem is solved positively in that given Banach space.

Even though the problem remains still open, to the best of our knowledge,
a considerable progress has been made by B. Cascales, G. Godefroy, G. Vera
and others in a series of papers [3, 4, 5, 6, 8, 9]. In particular, the Boundary
Problem has been positively solved for all boundaries in spaces of continuous
functions defined on a compact space, [4], and for the particular boundary
given by the set of extreme points (in the dual unit ball) for general Banach
spaces, [3]. The positive solution was also found for all Banach spaces not
containing a copy of `1[0, 1] in [5]. In fact a more general statement was
proved.

Theorem 1.1 ([5]). Suppose X does not contain a copy of `1[0, 1] and B is
a norming subset of the unit ball of X∗. Then the σ(X, B)-closed convex hull
of every σ(X, B)-compact norm-bounded set in X is σ(X, B)-compact.

Here and further on, by norming set (also known as 1-norming set) for the
Banach space (X, ‖ · ‖) we mean a set B ⊂ BX∗ such that ‖x‖ = supb∈B b(x)
for all x ∈ X . For example, any boundary is a norming set.

So, Theorem 1.1 combined with the aforementioned Simons’ result solves
the Boundary Problem, in particular, for all separable, reflexive and, more
generally, all weakly compactly generated (WCG for short) or weakly Lindelöf
spaces Banach spaces [16].

In the first part of our paper we recall that in order for a compact set H

to have compact closed convex hull, every Radon measure on H must possess
a barycenter, and vise versa. This last condition is proved to follow from so-
called Riemann-Lebesgue integrability of the identity mapping on H . Based
on recent results by V. Kadets, et. al. (see [19, 20, 29]) we immediately
obtain the Krein-Šmulian theorem for all topologies weaker than the norm
topology of a given Banach space X , provided X is either WCG or X has
an unconditional basis (possibly not countable) and fails to contain a copy of
`1(Γ) over any uncountable set Γ. Furthermore, in Theorem 2.4 we obtain the
same result for all compact sets fragmentable by the norm. This, in particular,
generalizes an earlier result in [8].

In Section 3 we continue the discussion of the Krein-Šmulian theorem and
give an alternative geometrical proof of quoted Theorem 1.1. Our approach
is based upon a straightforward construction of a sequence of independent
functions (much in the spirit of [28]) whenever the conclusion of the theorem
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is violated. This subsequently allows us to embed a copy of `1[0, 1] into the
space. Our argument is self-contained and does not employ the non-trivial
results used in the original proof in [5].

We further observe that in spite of Theorem 1.1, the Boundary Problem
itself has positive solution in any `1(Γ). This phenomenon is treated in Section
4. We will find that all `1(Γ) and all C(K)-spaces are angelic in any topology
generated by a boundary. This condition is shown to imply a positive solution
the Boundary Problem in Proposition 4.3.

Our notation and terminology are standard. We borrow some standard
topological results from books [13, 17, 21, 22, 27]. Our vector spaces are
all real. If X is a Banach space, B(X) denotes its closed unit ball, and
X∗ its topological dual space. For a locally convex space (X, τ) endowed
with topology τ its dual is denoted, as usual, by (X, τ)∗. Whenever B is a
subset of (X, τ)∗, we write σ(X, B) to denote the locally convex topology of
convergence on functionals from B. Also we adopt the following short notation
for weak topologies: σ(X, X∗) in the usual Banach space sense is denoted by
’w’ or ’w(τ)’ for a general locally convex space with topology τ . Analogously,
σ(X∗, X) = w∗ or w∗(τ).

The authors are very grateful to the referee who made numerous remarks
and suggestions, which substantially improved the text.

2. The Krein-Šmulian theorem and barycenters

The study of compact convex sets is closely related to the existence of
barycenters, see for example [10, 11, 26]. If H is a compact subset of the locally
convex space (X, τ) we denote by P(H) the set of all Radon probabilities µ

defined on the σ-algebra B(H) of τ -Borel subsets of H . A barycenter of µ is
said to be a vector x ∈ X such that the equality

(1) x∗(x) =

∫

H

x∗(h)dµ(h),

holds for every x∗ ∈ (X, τ)∗. Observe that the right hand side of equation (1)
is well-defined, because x∗|H is τ -continuous and bounded, hence µ-integrable.

In general, a barycenter may not exist, however its uniqueness follows im-
mediately from the fact that (X, τ)∗ separates the points of X . Let us denote
by xµ the barycenter of µ ∈ P(H) whenever it exists. It is well known that

(2) convτH = {xµ : µ ∈ P(H), µ has a barycenter},

see [26, Proposition 1.2] or [11, Theorem 2, p. 149].

The following lemma exhibits the classical link between barycenters and
the Krein-Šmulian theorem.

Lemma 2.1. Let H be a τ -compact set in a locally convex space (X, τ). Then
convτH is τ -compact if and only if every measure µ ∈ P(H) has a barycenter
in X.
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Proof. If convτH is τ -compact, then every µ ∈ P(H) has a barycenter after
[11, Theorem 1, p. 148].

Conversely, let us suppose that every measure µ ∈ P(H) has a barycenter
and let us see that convτH is τ -compact. Since the mapping ϕ : P(H) → X

defined by ϕ(µ) = xµ is weak∗-w(τ)-continuous, we obtain that ϕ(P(H))
is w(τ)-compact. According to (2), convτH is also w(τ)-compact. The τ -
compactness of convτH (that clearly follows from the classical Krein-Smu-
lian’s theorem, [17, Corollary 9.9.6]) is recalled below for sake of completeness:
since H is τ -compact, the closed convex hull convτH is precompact (τ -totally
bounded). To prove the τ -compactness of convτH we show that every net in
this set has a converging subnet. So, let us fix a net {yα} in convτH . The
w(τ)-compactness implies the existence of a subnet {yβ} of {yα} converging
to some y ∈ convτH in topology w(τ). In addition, the τ -total boundedness
of convτH implies that there exists a further subnet {yγ} of {yβ} which is
τ -Cauchy. Since τ has a basis of neighborhoods of the origing consisting of
w(τ)-closed sets, we conclude that actually y = τ − limγ yγ see [17, Theorem
3.2.4] and the proof is over. �

As we will see in a moment, barycenters are related to the concept of so-
called Riemann-Lebesgue integral introduced in [20]. Let us briefly outline
the definition.

Suppose that X is a Banach space, (Ω, Σ, µ) is a probability space and
f : Ω → X is a norm-bounded function not necessarily measurable in any
sense. Given a partition Π = {Ai}n

i=1 of Ω into measurable sets and a col-
lection T = {ti}n

i=1 of sampling points, i.e. ti ∈ Ai, i = 1, n, we define the
associated Riemann-Lebesgue integral sum as follows:

S(f, Π, T ) =
n
∑

i=1

f(ti)µ(Ai).

We endow {S(f, Π, T )}Π,T with a net structure by defining a partial order
by the rule: Π1 � Π2 if and only if every element of Π1 is contained in
some element of Π2. If this net converges to some element x in the norm
topology, then f is called Riemann-Lebesgue integrable, and x is then its
Riemann-Lebesgue integral. We refer the reader to [2, 7, 19, 20, 29] for detailed
treatment of this and related notions.

Notice that if f is strongly measurable then its Bochner integrability is
equivalent to convergence of the entire net of its Riemann-Lebesgue integral
sums (see [20]).

Assume now that the Banach space X is also endowed with another locally
convex topology τ weaker than the norm topology. If H is a τ -compact set
in X and the identity map id: H → X is Riemann-Lebesgue integrable with
respect to a measure µ ∈ P(H) then its integral is the barycenter of µ. More
generally, if the net of the Riemann-Lebesgue integral sums of id: H → X
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has a cluster point, then this point is the barycenter of µ. Indeed, if x =
limα S(id, Πα, Tα) for some subnet, then for every x∗ ∈ (X, τ)∗ we have

x∗(x) = lim
α

x∗(S(id, Πα, Tα)) = lim
α

S(x∗|H , Πα, Tα) =

∫

H

x∗(h)dµ(h),

since the last integral converges in the conventional Lebesgue sense.
Certain geometric conditions on the Banach space are shown to guarantee

existence of a cluster point for any measure µ. Based on [19, Theorem 4.1]
and [29, Theorem 2.1.2] where such conditions are formulated we immediately
obtain the following result.

Theorem 2.2. Let X be a Banach space satisfying either of the two conditions
below:

i) X is a WCG-space;
ii) X has an unconditional basis (possibly not countable) and fails to con-

tain a copy of `1(Γ) over uncountable Γ.

Let also τ be a locally convex topology on X weaker than the norm-topology.
Then the τ -closed convex hull of any τ -compact norm-bounded subset H of X

is τ -compact.

Although the geometric assumptions on the space X in this theorem are
obviously more restrictive than in Theorem 1.1, the conclusion holds for more
general topologies.

Next, using Lemma 2.1 and the ideas above we isolate a class of com-
pact sets (for topologies weaker than the weak topology) in a Banach space
for which the Krein-Šmulian theorem holds. We will use the notion of frag-
mentability, originally introduced by Jayne and Rogers in [18], that is stated
below:

Definition 2.3. Let (Z, τ) be a topological space and ρ a metric on Z. We
say that (Z, τ) is fragmented by ρ (or ρ-fragmented ) if for each non-empty
subset C of Z and for each ε > 0 there exists a τ -open subset U of Z such
that U ∩ C 6= ∅ and ρ − diam(U ∩ C) ≤ ε.

A great variety of sufficient conditions for norm-fragmentability of a subset
in a Banach space can be found in the literature: weakly compact sets of Ba-
nach spaces are norm-fragmented, [24]; more generally, sets which are Lindelöf
for the weak topology and compact with respect to the topology generated by
a norming set of functionals are fragmented too, [6, 8].

Theorem 2.4. Let X be a Banach space and τ any locally convex topology
in X weaker than the norm-topology. If H ⊂ X is a τ -compact norm-bounded
set fragmented by the norm, then convτH is τ -compact. Furthermore,

convτH = conv‖·‖H.
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First we show that a fragmentable set can be essentially split into subsets
of small diameter.

Lemma 2.5. Let (H, τ) be a compact space fragmented by a metric ρ and
µ ∈ P(H). Then for every ε > 0 there is a finite partition A1, A2, . . . , Am of
H in B(H) such that:

i) ρ − diam(Ai) < ε, i = 1, 2, . . . , m − 1;
ii) µ(Am) < ε.

Proof. Let A = {A ∈ B(H) : ρ− diam(A) < ε} and let F be the family made
of finite unions of elements in A. The ρ-fragmentability of (H, τ) implies that
A is not empty; thus F is not empty either. Let us define α = sup{µ(B) : B ∈
F} and pick a sequence (Bn) in F such that α = limn µ(Bn). If En =

⋃n
k=1 Bk

we still have α = limn µ(En) = µ(
⋃∞

n=1 En). We claim that

(3) µ

(

H \
∞
⋃

n=1

En

)

= 0.

If this is not the case, then there is a compact set K ⊂ H \ (
⋃∞

n=1 En)
such that µ(K) > 0. The restriction µ|K of µ to the Borel sets of K is a
Radon measure that has a non empty support F ⊂ K. The ρ-fragmentability
of (H, τ) applied to F implies that there is an open set O ⊂ H such that
O ∩ F 6= ∅ and ρ − diam(O ∩ F ) < ε. We also have µ(O ∩ F ) > 0 because F

is the support of µ|K . Consequently,

α ≥ lim
n

µ(En ∪ (O ∩ F )) = lim
n

µ(En) + µ(O ∩ F ) = α + µ(O ∩ F ) > α

and we reach the contradiction that establishes the validity of (3). Since

lim
n

µ(H \ En) = µ

(

H \
∞
⋃

n=1

En

)

= 0

we can find a m ∈ N such that µ(H \Em) < ε. Put Am = H \Em. Then Am

satisfies ii) and clearly Em can be split as required in i). �

Let us point out that our lemma above is very much like an argument
used in the proof of Theorem 2.3 in [25]: if we assume that ρ is lower semi-
continuous with respect to τ in our lemma, then we can take A1, A2, . . . , Am−1

being compact (just adapt the first part of the proof of Theorem 2.3 in [25]
to this situation).

Proof of Theorem 2.4. We show that the identity mapping id : H → X is
Riemann-Lebesgue integrable with respect to any measure µ ∈ P(H). Ac-
cording to Lemma 2.1 and the preceding discussion, this implies the first part
of the theorem. Moreover, from (2) we conclude that convτH lies in the clo-
sure of all possible Riemann-Lebesgue integral sums of id, which is obviously
a subset of conv‖·‖H . This implies the second part.
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So, let us fix a µ ∈ P(H). Without loss of generality we can assume that
H lies in the unit ball of X . For any given k ∈ N, using Lemma 2.5 we can
find a finite partition V k

1 , V k
2 , . . . , V k

nk
of H in B(H) such that

(4) ‖ · ‖ − diamV k
i <

1

2k+1
, i = 1, nk − 1,

and

(5) µ(V k
nk

) <
1

2k+1
.

Let us now denote Ai1i2...ik
=
⋂k

j=1V
j
ij

, where 1 ≤ ij ≤ nj , 1 ≤ j ≤ k, and

define a sequence of partitions of H as follows:

Πk = {Ai1...ik
: 1 ≤ ij ≤ nj , 1 ≤ j ≤ k}.

For each k ∈ N we also fix an arbitrary set of sampling points Tk = {ti1...ik
:

ti1...ik
∈ Ai1...ik

}. We claim that the limit limk→∞ S(id, Πk, Tk) exists in the
norm-topology, and is a limit point of the integral sums, even though the
sequence {Πk, Tk} is not a proper subnet.

Indeed, in view of (4) and (5), we have

‖S(id, Πk, Tk) − S(id, Πk+1, Tk+1)‖

=

∥

∥

∥

∥

∥

∥

∥

∥

∑

1≤j≤k
1≤ij≤nj

ti1...ik
µ(Ai1 ...ik

) −
∑

1≤j≤k+1
1≤ij≤nj

ti1...ikik+1
µ(Ai1...ikik+1

)

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∑

1≤j≤k
1≤ij≤nj

ti1...ik

nk+1
∑

ik+1=1

µ(Ai1...ikik+1
) −

∑

1≤j≤k+1
1≤ij≤nj

ti1...ikik+1
µ(Ai1 ...ikik+1

)

∥

∥

∥

∥

∥

∥

∥

∥

≤
∑

1≤j≤k+1
1≤ij≤nj

∥

∥ti1...ik
− ti1...ikik+1

∥

∥µ(Ai1 ...ikik+1
) ≤

3

2k+1
.

So, the sequence {S(id, Πk, Tk)} converges to some vector x ∈ X . An easy
computation also gives the estimate

‖S(id, Πk, Tk) − x‖ ≤
3

2k
, k = 1, 2, . . .

Given ε > 0 take k ∈ N so that 9
2k+1 < ε. If Π � Πk and T is any collection

of sampling points in Π, the same calculations as above show that

‖S(id, Π, T ) − S(id, Πk, Tk)‖ ≤
3

2k+1
,
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and hence

‖S(id, Π, T )− x‖ ≤
3

2k+1
+

3

2k
=

9

2k+1
< ε.

This proves the desired result and finishes the argument. �

Let us note that Theorem 2.4 applied to the spaces of Bochner integrable
functions considered in [8, Example E] yields the main results of [1] as a
consequence. Furthermore, if X is an Asplund space (i.e. X∗ has the Radon-
Nikodým property, or equivalently the w∗-compact subsets of X∗ are norm-
fragmented), then according to our theorem, for every w∗-compact subset H

of X∗ we have the equality convw∗

H = conv‖·‖H , which gives an alternative
proof of [24, Theorem 2.3].

We conclude this section with several remarks.
First we comment on the fact that Lemma 2.5 implies strong µ-measurability

of id. Hence, id is Bochner integrable and its Riemann-Lebesgue integral x

that we found at the end of the proof of Theorem 2.4 is in fact its Bochner
integral too.

We also remark that τ -compact sets as in Theorem 2.4 is not automatically
norm-bounded even if τ is generated by a norming set of functionals. Indeed,
consider X = `1 and τ induced by the coordinate-axis vectors {en}n∈N ⊂ `∞.
Set H = {nen}n∈N ∪ {0} ⊂ `1. Then H is unbounded, yet τ -compact.

3. A new proof of Theorem 1.1

In this section we give an alternative proof of Theorem 1.1 stated in the
introduction. Our approach is based on a geometric construction of a inde-
pendent sequence of functions on a τ -compact (τ = σ(X, B)) set with non-
compact convex hull. After a short argument, presented in the original proof
in [5], this implies existence of a copy of `1[0, 1] in X .

So, for the rest of this section we assume that there exists a norm-bounded
τ -compact set H in X such that convτH is not τ -compact, and we show that
X then contains a copy of `1[0, 1]. For purely technical reasons we also assume
without loss of generality that H is contained in the unit ball of X and that
the norming set B inducing τ is absolutely convex.

In view of Lemma 2.1, there is a measure µ ∈ P(H) without a barycenter.
We can decompose µ into the sum of its purely atomic part µa and its atomless
part. The purely atomic part always has a barycenter. Indeed, in order to see
it, we recall that the Radon probability µ has at most countably many disjoint
atoms that are singletons (hi)i. Hence, µa =

∑

i λiδhi
, with λi ≥ 0 and

∑

i λi ≤ 1, and thus xµa
=
∑

i λihi is the barycenter for µa. This observation
implies that only the atomless part of µ does not have a barycenter.

So, from now on we assume that µ has no atoms. Besides, we can identify
H with the support of µ, so every open set in H has positive measure with
respect to µ.
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Our plan is to pick a sequence of functionals (fn)n∈N in B so that

(6) H
⋂

(

⋂

m∈M

{fm > r + δ}

)

⋂

(

⋂

n∈N

{fn < r}

)

6= ∅

holds for every two disjoint sets of natural numbers M and N , and some fixed
two real numbers r and δ, δ > 0. Such a sequence is called independent over
H (see [28]). Every Banach space, which contains an independent sequence
over a compact set, also contains a copy of `1[0, 1] (see Lemma B in [5]).

Our construction is based on the following lemmas.

Lemma 3.1. There exists an ε > 0 and a Borel set A in H with µ(A) > 0,
such that for every Borel subset B in A with µ(B) > 0, and every h ∈ convτH

there is an f ∈ B satisfying the following inequality:

(7) f(h) > ε +
1

µ(B)

∫

B

f(s)dµ(s).

Proof. Suppose, on the contrary, that for any ε > 0 and measurable A ⊂ H

there is a B ⊂ A and h ∈ convτH such that

f(h) ≤ ε +
1

µ(B)

∫

B

f(s)dµ(s),

whenever f ∈ B.
Let εn = 1

2n , n ∈ N. By the exhaustion argument, using the previous

inequality for ε1 = 1
2 , we can find a sequence (h1

n)n∈N ⊂ convτH and a

pairwise disjoint sequence (A1
n)n∈N in B(H) such that µ(H \

⋃∞
n=1 A1

n) = 0
and

f(h1
n) ≤ ε1 +

1

µ(A1
n)

∫

A1
n

f(s)dµ(s),

for all f ∈ B and n ∈ N. Hence, as B is absolutely convex, we have
∣

∣

∣

∣

∣

f(h1
n) −

1

µ(A1
n)

∫

A1
n

f(s)dµ(s)

∣

∣

∣

∣

∣

≤ ε1,

f ∈ B, n ∈ N. Letting h1 =
∑∞

n=1 µ(A1
n)h1

n and adding up the previous
inequalities we get

∣

∣

∣

∣

f(h1) −

∫

H

f(s)dµ(s)

∣

∣

∣

∣

≤ ε1.

In the same manner, for every n ∈ N, we can construct an hn ∈ convτH

so that
∣

∣

∣

∣

f(hn) −

∫

H

f(s)dµ(s)

∣

∣

∣

∣

≤ εn,

for all f ∈ B. Since B is norming, it follows that
∥

∥hn − hn+1
∥

∥ ≤ εn + εn+1

and hence, the limit h = ‖ · ‖ − limn→∞ hn exists. Passing to limits in the
previous inequality we see that h is the barycenter of µ, which contradicts our
assumption. �
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Remark that since µ is a regular measure, A can be chosen closed. Fur-
thermore, restricting µ on A we can and do assume that A is in fact the whole
H .

We say that a set K ⊂ X has a finite ε-net if there is a finite subset F of
K such that K ⊂

⋃

x∈F{y ∈ X : ‖y − x‖ ≤ ε}. It is a basic fact, that every
norm-compact set has a finite ε-net for all ε > 0.

From now on, we fix the ε > 0 found in Lemma 3.1.

Lemma 3.2. For any norm-compact set K ⊂ convτH, any collection of open
sets (Ui)

n
i=1 in H and positive numbers (λi)

n
i=1,

∑n
i=1λi = 1, there are open

sets (Vi)
n
i=1 satisfying the following conditions:

i) Vi ⊂ Ui, i = 1, n;
ii) dist(K,

∑n
i=1 λivi) > ε

2 , whenever vi ∈ Vi, i = 1, n.

Proof. First we find a Borel subset Wi in every Ui so that µ(Wi) = λiµ(W ) >

0, where W = ∪n
i=1Wi and Wi ∩Wj = ∅, i 6= j. Indeed, since µ is atomless we

can pick disjoint Borel sets Ai ⊂ Ui, i = 1, n, such that µ(Ai) = µ(Aj) > 0
whenever i 6= j. By the same token, there are sets Wi ⊂ Ai such that
µ(Wi) = λiµ(Ai), i = 1, n. Clearly, they fulfill our requirement.

Let us fix any finite ε
2 -net (hk)N

k=1 in K. In view of Lemma 3.1 there is an
f ∈ B verifying

f(h1) > ε +
1

µ(W )

∫

W

f(s)dµ(s)

= ε +

n
∑

i=1

λi

µ(Wi)

∫

Wi

f(s)dµ(s).

Then for every i = 1, n one can find (wij )
M
j=1 ⊂ Wi such that

f(h1) > ε +
n
∑

i=1

λi

M
∑

j=1

1

M
f(wij)

= ε +

M
∑

j=1

1

M

n
∑

i=1

λif(wij).

Thus,
M
∑

j=1

1

M

∣

∣

∣

∣

∣

f(h1) −
n
∑

i=1

λif(wij)

∣

∣

∣

∣

∣

> ε.

So, for some j0 we have
∣

∣

∣

∣

∣

f(h1) −
n
∑

i=1

λif(wij0 )

∣

∣

∣

∣

∣

> ε.
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Since wij0 ∈ Wi ⊂ Ui, there are open subsets W 1
i ⊂ Ui such that the inequality

∣

∣

∣

∣

∣

f(h1) −
n
∑

i=1

λif(wi)

∣

∣

∣

∣

∣

> ε

holds for all wi in W 1
i , i = 1, n. As a consequence, we have

∥

∥

∥

∥

∥

h1 −
n
∑

i=1

λiwi

∥

∥

∥

∥

∥

> ε,

whenever wi ∈ W 1
i , i = 1, n.

Doing the same for (W 1
i )n

i=1 instead of (Ui)
n
i=1, and h2 instead of h1 we

find open sets W 2
i ⊂ W 1

i with
∥

∥

∥

∥

∥

h2 −
n
∑

i=1

λiwi

∥

∥

∥

∥

∥

> ε,

whenever wi ∈ W 2
i , i = 1, n.

Continuing the process we end up with open sets Vi = W N
i . It is clear from

our construction that
∥

∥

∥

∥

∥

h −
n
∑

i=1

λivi

∥

∥

∥

∥

∥

>
ε

2
,

for all h ∈ K and vi ∈ Vi. So, conditions i) and ii) are satisfied. �

Lemma 3.3. For any norm-compact set K ⊂ convτH and any collection
of open sets (Ui)

n
i=1 in H there are open sets (Vi)

n
i=1 satisfying the following

conditions:

i) Vi ⊂ Ui, i = 1, n;
ii) dist(K,

∑n
i=1λivi) > ε

4 , whenever vi ∈ Vi, i = 1, n, and λi ≥ 0 with
∑n

i=1λi = 1.

Proof. To prove this lemma we fix a finite ε
4 -net in the set

{(λ1, λ2, . . . , λn) :

n
∑

i=1

λi = 1, λi ≥ 0}

equipped with the metric ρ((λi), (νi)) =
∑n

i=1 |λi − νi|. Then we apply
Lemma 3.2 successively to all the elements of the net. �

Lemma 3.4. For any collection of open sets (Ui)
n
i=1 in H there exist f ∈ B

and two constants a and b with b − a ≥ ε
8 such that

{f > b} ∩ Ui 6= ∅,

{f < a} ∩ Ui 6= ∅,

for all i = 1, n.
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Proof. Let us fix arbitrary ui ∈ Ui, i = 1, n and denote K = conv(ui)
n
i=1.

By Lemma 3.3, there are vectors vi ∈ Ui such that if L = conv(vi)
n
i=1, then

dist(K, L) > ε
4 .

By the geometric version of the Hahn-Banach Theorem, there exists a
g ∈ B(X∗), ‖g‖ = 1, separating K − L from the ball ε

4B(X), i.e.

g(k − l) >
ε

4
,

for all k ∈ K, l ∈ L. Since the w∗-closure of B coincides with the entire
B(X∗), we can find an f ∈ B, for which the inequality

f(k − l) >
ε

4

holds, whenever k ∈ K and l ∈ L.
Now it is easy to see that the constants a = supl∈Lf(l) + ε

16 and b =
infk∈Kf(k) − ε

16 meet the desired conditions. �

Construction of the independent sequence.
First, applying Lemma 3.4 to U1 = U2 = ... = Un = H we find f1 ∈ B and

constants a1, b1 with b1 − a1 ≥ ε
8 such that

U1 = {f1 > b1} ∩ H 6= ∅,

U2 = {f1 < a1} ∩ H 6= ∅.

Then we apply Lemma 3.4 to U1, U2 and get f2 ∈ B, a2, b2 with b2 − a2 ≥ ε
8

such that

{f2 > b2} ∩ Ui 6= ∅,

{f2 < a2} ∩ Ui 6= ∅, i = 1, 2.

It is clear how to continue the process to obtain sequences (fn)n∈N ⊂ B and
(bn, an)n∈N, bn − an ≥ ε

8 such that for all finite disjoint sets M and N in N

we have

H ∩

(

⋂

m∈M

{fm > bm}

)

⋂

(

⋂

n∈N

{fn < an}

)

6= ∅.

Of course we can assume that |an − a| < ε
32 , for some constant a and every

n ∈ N. Then letting δ = ε
32 , r = a + ε

32 we finally get

H ∩

(

⋂

m∈M

{fm > r + δ}

)

⋂

(

⋂

n∈N

{fn < r}

)

6= ∅,

whenever M and N are finite disjoint subsets of N. The proof is finished. 2

As explained in the introduction, as a consequence of Theorem 1.1 and
Simons’ result ([30]) we obtain the positive solution to the Boundary Problem
in spaces not containing `1[0, 1]. Surprisingly, this is also true for any `1(Γ)
in the canonical norm. In the next section we discuss the Boundary Problem
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in the classical `1(Γ) and C(K)-spaces in more detail and prove even stronger
results for them.

4. Angelic spaces and the Boundary Problem

To motivate the results in this section we start with the following easy fact,
which, in particular, yields the positive solution to the Boundary Problem
under certain restrictions on the boundary.

Proposition 4.1. Let X be a Banach space, D a norming subset of B(X∗)
and H a norm bounded σ(X, D)-compact subset of X. If D is dense in B(X∗)
in the topology of uniform convergence on countable subsets of H, then H is
weakly compact.

Proof. It suffices to prove that H is weakly countably compact, which implies
that H is weakly compact due to the Eberlein-Šmulyan Theorem. Take any
sequence (xn) in H and let x0 ∈ H be a σ(X, D)-cluster point of (xn). For
any x∗ ∈ BX∗ and ε > 0 iii) implies that there is a point d∗ ∈ D such that

|x∗(xn) − d∗(xn)| < ε, for n = 0, 1, 2 . . .

From this we deduce that x0 is also a σ(X, X∗)-cluster point of X∗ and the
proof is finished. �

We stress that when D is moreover absolutely convex in the previous propo-
sition then the fact H being weakly compact implies that D is dense in B(X∗)
in the topology of uniform convergence on countable subsets of H (in fact it
is dense in the topology of uniform convergence on H) — bear in mind that
the closures of D in the Mackey topology µ(X∗, X) and the weak∗ topology

σ(X∗, X) coincide and that D
σ(X∗,X)

= B(X∗), see [27].
It is interesting to highlight that the thesis of Proposition 4.1 also holds if

we assume that there is a boundary B′ ⊂ BX∗ such that:

α) each x∗ ∈ B′ is in the closure of D for the topology of uniform con-
vergence on countable subsets of H ;

β) norm bounded and σ(X, B′)- relatively countably compact subsets of
X are weakly relatively compact.

This idea was used in [4] for X = C(K) and B′ = K ∪ {−K} ⊂ B(C(K)∗)
to solve the Boundary Problem for C(K)-spaces. We now establish a pure
topological statement giving a new proof of this result not only for C(K) but
also for all `1(Γ) in their canonical norms. In fact, we prove that those spaces
are angelic (see the definition below) in the topology induced by a boundary.

Definition 4.2 (Fremlin). A regular topological space E is angelic if every
relatively countably compact subset A of E is relatively compact and its
closure A is made up of the limits of sequences from A.
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In angelic spaces the different concepts of compactness and relative com-
pactness coincide: the (relatively) countably compact, (relatively) compact
and (relatively) sequentially compact subsets are the same, [13]. Examples of
angelic spaces include C(K) endowed with the topology tp(K) of pointwise
convergence on a countably compact space K ([15, 22]) and all Banach spaces
with their weak topologies.

The relation between angelicity and the Boundary Problem is seen from
the following proposition.

Proposition 4.3. Let X be a Banach space and let B ⊂ B(X∗) be a boundary
for X such that (X, σ(X, B)) is angelic. Then a subset H of X is weakly
compact if (and only if) H is norm bounded and σ(X, B)-countably compact.

Proof. In view of the Eberlein-Šmulyan Theorem, we only have to prove that
if H is norm bounded and σ(X, B)-compact, then H is σ(X, X∗)-sequentially
compact. Since the space (X, σ(X, B)) is angelic, for each sequence (xn) in
H there is a subsequence (xnk

) and a point x0 ∈ H such that x0 = σ(X, B)−
limk xnk

. Now, Corollary 11 in [30] (see alternatively, [31, Theorem on p. 70])
straightforwardly applies to ensure that x0 = σ(X, X∗)− limk xnk

. The proof
is over. �

It is not difficult to prove that if X is a separable Banach space then, for
any boundary B ⊂ B(X∗) the space (X, σ(X, B)) is angelic. Although there
are boundaries in the nonseparable case that also provide angelic topologies.
For instance, the one with C(K) we mentioned above.

Another example of this phenomenon is given by our next proposition.

Proposition 4.4. Let Γ be any set and D = {−1, 1}Γ the set of the extreme
points of B(`∞(Γ)). Then,

i) (`1(Γ), σ(`1(Γ), D)) is angelic;
ii) If H ⊂ `1(Γ) is ‖ · ‖1-bounded and σ(`1(Γ), D)-compact then H is

weakly compact.

Proof. To prove i) observe first that D ⊂ B(`∞(Γ)), (D, σ(`∞(Γ), `1(Γ))) is
compact and (C(D), tp(D)) is angelic, [13]. The natural embedding

(`1(Γ), σ(`1(Γ), D)) → (C(D), tp(D))

is a homeomorphism onto its image. Then the angelicity of the space `1(Γ) in
the topology σ(`1(Γ), D) follows from the angelicity of (C(D), tp(D)). State-
ment ii) is a straightforward consequence of Proposition 4.3. �

In Theorem 4.9 we will prove that statements as in Proposition 4.4 hold
for all boundaries of B(`∞(Γ)). Still let us remark that ii) was alternatively
obtained in [17, Theorem 10.5.2] using Schur’s Lemma for `1(Γ).
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The next lemma will allow us to transfer the angelic property from one
topology to another. We will use it later in the proofs of Theorems 4.8 and
4.9.

Lemma 4.5. Let X be a non-empty set and τ , T two Hausdorff topologies
on X such that (X, τ) is regular and (X, T) is angelic. Assume that for every
sequence (xn) in X with a τ -cluster point x ∈ X, x is T-cluster point of (xn).
Then, the following assertions hold:

i) If L ⊂ X is τ -relatively countably compact, then L is T-relatively
compact;

ii) If L ⊂ X is τ -compact, then L is T- compact;
iii) (X, τ) is an angelic space.

Proof. Statement i) is a straightforward consequence of the assumptions on
τ -cluster points of sequences in X and the fact that (X, T) is angelic.

Let us prove ii). If L ⊂ X is τ -compact, then L is T-relatively compact by
i). To finish the proof of ii) it will be enough to show that L is T-closed. Pick

x ∈ L
T
. Using that (X, T) is angelic, there is a sequence (xn) in L with

(8) x = T − lim
n→∞

xn

By τ -compactness, there is y ∈ L which is a τ -cluster point of (xn). Our
assumption implies that y is a T-cluster point of (xn), hence by (8) y = x and
thus x ∈ L. The proof of ii) is concluded.

The proof of iii) relies upon the following

Claim 4.6. If L is a τ -relatively countably compact and countable subset of
X , then

(9) L
τ

= L
T

and the topologies τ and T coincide on L
T
.

Suppose for a moment that the claim is true and let us prove that (X, τ)
is angelic: to this end we will show that if A ⊂ X is τ -relatively countably

compact then A
τ

= A
T

is τ -compact and τ and T coincide on A
τ
. We already

know that A
T

is T-compact by i). Now we will prove that the identity map

id : (A
T
, T) −→ (A

T
, τ)

is continuous, that is, we will show that any τ -closed subset of A
T

is T-closed.

Indeed, take a τ -closed subset F of A
T
. Pick any x ∈ F

T
. The angelicity of

(X, T) provides us with a sequence (xn) in F such that

x = T − lim
n→∞

xn
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Now for every n ∈ N we can also take (xmn) in A such that

xn = T − lim
m→∞

xmn.

If we define L = {xmn : m, n ∈ N} then the claim tells us that τ and T

coincide on L
T

and so
x = τ − lim

n→∞
xn

what implies that x ∈ F . So A
T

is τ -compact and τ and T coincide on A
T
.

So, being A
T

τ -closed we obtain A
τ
⊂ A

T
. On the other hand, as A ⊂ A

T
, A

is τ -relatively compact and so A
τ

is T-compact after ii). Therefore A
T
⊂ A

τ
,

thus A
T

= A
τ

and the proof is complete.

Let us now prove Claim 4.6.

From the assumptions we have L
τ
⊂ L

T
. Conversely, if we pick x in the

T-compact subset L
T
, then the angelicity of (X, T) ensures us of the existence

of a sequence (xn) in L such that

(10) x = T − lim
n→∞

xn

By the τ -relatively countably compactness of L, there is y ∈ L
τ

which is a
τ -cluster point of (xn). Therefore y is a T-cluster point of (xn), hence by (10)

y = x and thus x ∈ L
τ

what implies the equality (9).

To prove that the topologies τ and T coincide on H := L
T

it suffice to
show, by compactness, that the identity

id : (H, T) −→ (H, τ)

is continuous. To this end we will establish that any τ -closed subset F of H

is T-closed . Indeed, as (H, τ) is a regular topological space we have

F = ∩{U
τ

: F ⊂ U ⊂ H, U is τ -open in H}

On the other hand for any such a U we have that U
τ

= U ∩ L
τ

and we can
apply the equality (9) to U ∩ L to conclude that

U ∩ L
τ

= U ∩ L
T

This implies

F = ∩{U ∩ L
T

: F ⊂ U ⊂ H, U is τ -open in H}

and so F is T-closed. �

Note that our hypothesis in Claim 4.6 about L, namely, L countable and
relatively countably compact in X do not imply (in general) that L has to be
relatively compact in X . Indeed, take βN the Stone-Čech compactification
of the natural numbers N and pick a point p ∈ βN \N. Take X := βN \ {p}
and L = N. It is well known that an infinite set in L cannot have a unique
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cluster point in βN \ N. This proves that L is relatively countably compact

in X but its closure in X , L
X

= X , is not compact.
The lemma below can be found in [4]. Here we include a slightly different

proof that does not use the Uryshon Lemma.

Lemma 4.7. Let K be a compact space and B ⊂ B(C(K)∗) a boundary for
(C(K), ‖ · ‖∞). If (fn) is an arbitrary sequence in C(K) and x ∈ K, then
there is µ ∈ B such that

fn(x) =

∫

K

fndµ

for every n ∈ N.

Proof. If we define the continuous function g : K → [0, 1] by the expression

g(t) := 1 −
∞
∑

n=1

1

2n

|fn(t) − fn(x)|

1 + |fn(t) − fn(x)|
, t ∈ K,

then

(11) F =

∞
⋂

n=1

{y ∈ K; fn(y) = fn(x)} = {y ∈ K : g(y) = 1 = ‖g‖∞}.

Since B is a boundary, there exists µ ∈ B such that
∫

K
gdµ = 1. From here

we obtain

(12) 1 = ‖µ‖ = |µ|(K) ≥

∫

K

gd|µ| ≥

∫

K

gdµ = 1.

In other words,

0 = |µ|(K) −

∫

K

gd|µ| =

∫

K

(1 − g)d|µ|.

Since 1−g ≥ 0 we obtain |µ|({y ∈ K : 1−g(y) > 0}) = 0, that is |µ|(K \F ) =
0. Therefore, for every n ∈ N we have

∫

K

fndµ =

∫

F

fndµ =

∫

F

fn(x)dµ = fn(x)

because µ(F ) =
∫

F
gdµ =

∫

K
gdµ = 1 by the equalities (11) and (12). �

We naturally arrive at the following.

Theorem 4.8 ([4]). Let K be a compact space and B ⊂ B(C(K)∗) a boundary
for C(K). Then (C(K), σ(C(K), B)) is an angelic space. Consequently, if
H ⊂ C(K) is norm bounded and σ(C(K), B)-countably compact, then H is
weakly compact.

Proof. The space (C(K), tp(K)) is angelic, [15, 22] (see also [13]). Bearing
this in mind, the first part of the theorem follows from Lemmas 4.7 and 4.5
applied to X = C(K), τ = σ(C(K), B) and T = tp(K).

The second part of the theorem follows from Proposition 4.3. �
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The game we played for spaces C(K) can be played for `1(Γ) too.

Theorem 4.9. Let Γ be any set and B ⊂ B(`∞(Γ)) a boundary for (`1(Γ), ‖ ·
‖1). Then,

i) (`1(Γ), σ(`1(Γ), B)) is angelic;
ii) If H ⊂ `1(Γ) is ‖ · ‖1-bounded and σ(X, B)-compact then H is weakly

compact.

Proof. The fact that B is a boundary implies that for any countable subset
A ⊂ Γ and any family of signs (yγ)γ∈A ∈ {−1, 1}A, there is (bγ)γ∈Γ in B such
that bγ = yγ , for γ ∈ A. According to this, if D = {−1, 1}Γ, d∗ ∈ D and we
take a sequence (zn)n ∈ `1(Γ) there is b∗ ∈ B such that

d∗(zn) = b∗(zn)

for every n ∈ N. Due to Proposition 4.4, the space `1(Γ) is angelic in the
topology σ(`1(Γ), D). Therefore, statement i) follows from Lemma 4.5 applied
to τ = σ(`1(Γ), B) and T = σ(`1(Γ), D). Statement ii) is now a consequence
of Proposition 4.3. �

We finish with two questions still open to the best of our knowledge.

A result by Bourgain and Talagrand ([3]) states that if X is a Banach space
and H is a norm bounded and σ(X, extB(X∗))-countably compact subset of
X , then H is weakly compact (Rainwater’s theorem is a weak version of this).
Therefore, a positive solution of the problem below would imply the Boundary
Problem.

Problem 4.10. Let X be a Banach space, B ⊂ B(X∗) a boundary and D =
conv(B ∪ {−B}). Given e∗ ∈ extB(X∗), ε > 0 and a sequence (xn)n, is there
d∗ ∈ D such that

|d∗(xn) − e∗(xn)| < ε,

for every n ∈ N?

Problem 4.11. Is a Banach space X angelic in the topology σ(X, extB(X∗))?
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